-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.tex
165 lines (109 loc) · 4.87 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
\documentclass{beamer}
\usepackage{color}
\usepackage[T1]{fontenc}
\usepackage[utf8]{inputenc}
\usepackage{hyperref}
\usepackage{amsthm}
\usepackage{etoolbox}
\usepackage{mathtools}
\bibliographystyle{ieeetr}
\definecolor{WPI_red}{RGB}{172,43,55}
\setbeamertemplate{navigation symbols}{}
\setbeamertemplate{footline}[frame number]
\setbeamercolor{itemize item}{fg=WPI_red}
\setbeamercolor{itemize subitem}{fg=WPI_red}
\setbeamercolor{enumerate item}{fg=WPI_red}
\setbeamertemplate{caption}[numbered]
\setbeamercolor{caption name}{fg=WPI_red}
\setbeamertemplate{theorems}[numbered]
\renewcommand*{\thefootnote}{\fnsymbol{footnote}}
\setbeamercolor{block title}{use=structure,fg=white,bg=WPI_red}
\setbeamercolor{block body}{use=structure,fg=black,bg=WPI_red!5!white}
\renewcommand{\qedsymbol}{$\blacksquare$}
\undef{\lemma}
\newtheorem{lemma}{\translate{Lemma}}
\title{\textcolor{WPI_red} {Analysis of 5G Directional HetNets \\with Stochastic Geometry}\\Preliminaries}
% \subtitle{\color{black} Lecture 30}
\author{Travis Collins\\ Srikanth Pagadarai \\ Alexander Wyglinski}
\date{January 19, 2016}
\begin{document}
\frame{\maketitle}
\begin{frame}
\frametitle{\color{WPI_red} Preliminary Desired Outcomes}
\begin{itemize}
\item Goal of this work is explore effects of directional antennas in multi-tier heterogeneous networks (HetNets).
\item HetNets heterogeneity includes diverse MAC schemes as well
\item Utilize current stochastic geometry frameworks for analytical analysis
\item Provide incites to optimize mult-tier network design
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\color{WPI_red} System Model}
\begin{itemize}
\item Desired signal is $S = r^{-\alpha}$.
\item Interference is modeled as \textit{shot noise}:
\begin{equation*}
I = \sum_{x\in \Phi} h_x\;l(||x||)\; \zeta_{m, x}^2(\psi)
\end{equation*}
where, $h_x$ is an exponential random variable, $\Phi$ is a Poisson Point Process (PPP) and $\zeta_{m, x}(\psi)$ is the radiation pattern of the directional antenna - modeled as a Gaussian function~\cite{werner2015}.
\item (Performance Metric) Probability of success:
\begin{equation*}
p_s = P\left( \frac{S}{I} > \theta \right).
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\color{WPI_red} Probability of success for ALOHA}
\begin{itemize}
\item Interferers use omnidirectional antennas. Channel is Rayleigh and MAC scheme is ALOHA~\cite{haenggi2009}.
\begin{equation*}
p_s = exp\left(-p\lambda\pi r^2\theta^\delta\frac{\pi \delta}{sin(\pi\delta)}\right)
\end{equation*}
% \end{itemize}
\item Interferers use directional antennas. Channel is Rayleigh and MAC scheme is ALOHA.
\begin{equation*}
p_s = exp\left(-0.25p\lambda\sqrt{\pi} r^2\theta^\delta\frac{\pi \delta}{sin(\pi\delta)}\sqrt{\alpha\beta^2} erf\left(\frac{2\pi}{\sqrt{\alpha\beta^2}}\right)\right)
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\color{WPI_red} Probability of success for ALOHA}
\begin{figure}
\centering
\includegraphics[resolution=2400, width=0.9\textwidth]{aloha.eps}
\caption{Probability of success for ALOHA MAC when interferers use directional antennas ($\lambda=1/5$, $r=1$, $p=0.5$, $\beta=125.4^o$).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{\color{WPI_red} Probability of success for CSMA}
\begin{itemize}
\item Interferers use omnidirectional antennas. Channel is Rayleigh and MAC scheme is CSMA~\cite{haenggi2009}.
\begin{equation*}
p_s = exp\left(-p\lambda\pi \left(\eta+\frac{\rho^2r^2\theta^\delta}{r^2\theta^\delta+\rho^\alpha}\right)\right)
\end{equation*}
\item Interferers use directional antennas. Channel is Rayleigh and MAC scheme is CSMA.
\begin{equation*}
p_s = exp\left(-0.25p\lambda\sqrt{\pi} \left(\eta+\frac{\rho^2r^2\theta^\delta}{r^2\theta^\delta+\rho^\alpha}\right)\sqrt{\alpha\beta^2} erf\left(\frac{2\pi}{\sqrt{\alpha\beta^2}}\right)\right)
\end{equation*}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{\color{WPI_red} Probability of success for CSMA}
\begin{figure}
\centering
\includegraphics[resolution=2400, width=0.9\textwidth]{csma.eps}
\caption{Probability of success for CSMA MAC when interferers use directional antennas ($\lambda=1/4$, $r=1$, $p=0.15$, $\beta=125.4^o$).}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{\color{WPI_red} Future Work}
\begin{itemize}
\item A more detailed analytical evaluation of the relationship between antenna beamwidth and antenna mainbeam misalignment on the performance.
\item Extend the probability of success performance metric by evaluating transmission capacity for directional networks using CSMA MAC scheme.
\item The specific framework that will be used is the asymptotic SIR analysis work based on a PPP, in order to provide analytically tractable results for directional networks using CSMA.
\end{itemize}
\end{frame}
\begin{frame}{Bibliography}
\bibliography{meeting_bib}
\end{frame}
\end{document}