-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
112 lines (92 loc) · 3.75 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
from datetime import datetime
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import roc_auc_score, accuracy_score,confusion_matrix
import torchvision
import torchvision.transforms as transforms
from skimage import io
from torch.utils.data import DataLoader
#from dataset import *
from torch.autograd import Variable
from PIL import Image
from tensorboardX import SummaryWriter
#from models.discriminatorlayer import discriminator
from dataset import *
from conf import settings
import time
import cfg
from tqdm import tqdm
from torch.utils.data import DataLoader, random_split
from utils import *
import function
args = cfg.parse_args()
GPUdevice = torch.device('cuda', args.gpu_device)
net = get_network(args, args.net, use_gpu=args.gpu, gpu_device=GPUdevice, distribution = args.distributed)
optimizer = optim.Adam(net.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5) #learning rate decay
'''load pretrained model'''
if args.weights != 0:
print(f'=> resuming from {args.weights}')
assert os.path.exists(args.weights)
checkpoint_file = os.path.join(args.weights)
assert os.path.exists(checkpoint_file)
loc = 'cuda:{}'.format(args.gpu_device)
checkpoint = torch.load(checkpoint_file, map_location=loc)
start_epoch = checkpoint['epoch']
best_tol = checkpoint['best_tol']
net.load_state_dict(checkpoint['state_dict'],strict=False)
# optimizer.load_state_dict(checkpoint['optimizer'], strict=False)
args.path_helper = checkpoint['path_helper']
logger = create_logger(args.path_helper['log_path'])
print(f'=> loaded checkpoint {checkpoint_file} (epoch {start_epoch})')
args.path_helper = set_log_dir('logs', args.exp_name)
logger = create_logger(args.path_helper['log_path'])
logger.info(args)
if args.dataset == 'oneprompt':
nice_train_loader, nice_test_loader, transform_train, transform_val, train_list, val_list =get_decath_loader(args)
'''checkpoint path and tensorboard'''
checkpoint_path = os.path.join(settings.CHECKPOINT_PATH, args.net, settings.TIME_NOW)
#use tensorboard
if not os.path.exists(settings.LOG_DIR):
os.mkdir(settings.LOG_DIR)
writer = SummaryWriter(log_dir=os.path.join(
settings.LOG_DIR, args.net, settings.TIME_NOW))
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
checkpoint_path = os.path.join(checkpoint_path, '{net}-{epoch}-{type}.pth')
'''begain training'''
best_acc = 0.0
best_tol = 1e4
for epoch in range(settings.EPOCH):
net.train()
time_start = time.time()
loss = function.train_one(args, net, optimizer, nice_train_loader, epoch, writer, vis = args.vis)
logger.info(f'Train loss: {loss}|| @ epoch {epoch}.')
time_end = time.time()
print('time_for_training ', time_end - time_start)
net.eval()
if epoch and epoch % args.val_freq == 0 or epoch == settings.EPOCH-1:
tol, (eiou, edice) = function.validation_one(args, nice_test_loader, epoch, net, writer)
logger.info(f'Total score: {tol}, IOU: {eiou}, DICE: {edice} || @ epoch {epoch}.')
if args.distributed != 'none':
sd = net.module.state_dict()
else:
sd = net.state_dict()
if tol < best_tol:
best_tol = tol
is_best = True
save_checkpoint({
'epoch': epoch + 1,
'model': args.net,
'state_dict': sd,
'optimizer': optimizer.state_dict(),
'best_tol': best_tol,
'path_helper': args.path_helper,
}, is_best, args.path_helper['ckpt_path'], filename="best_checkpoint")
else:
is_best = False
writer.close()