Grab some HTML:
>>> import requests >>> html = requests.get('https://www.github.com/').text
Then use :func:`formasaurus.extract_forms <formasaurus.classifiers.extract_forms>` to detect form and field types:
>>> import formasaurus >>> formasaurus.extract_forms(html) [(<Element form at 0x1150ba0e8>, {'fields': {'q': 'search query'}, 'form': 'search'}), (<Element form at 0x1150ba138>, {'fields': {'user[email]': 'email', 'user[login]': 'username', 'user[password]': 'password'}, 'form': 'registration'})]
Note
To detect form and field types Formasaurus needs to train prediction models on user machine. This is done automatically on first call; models are saved to a file and then reused.
:func:`formasaurus.extract_forms <formasaurus.classifiers.extract_forms>`
returns a list of (form, info) tuples, one tuple for each <form>
element on a page. form
is a lxml Element for a form,
info
dict contains form and field types.
Only fields which are
- visible to user;
- have non-empty
name
attribute
are returned - other fields usually should be either submitted as-is
(hidden fields) or not sent to the server at all (fields without
name
attribute).
There are edge cases like fields filled with JS or fields which are made invisible using CSS, but all bets are off if page uses JS heavily and all we have is HTML source.
By default, info dict contains only most likely form and field types.
To get probabilities pass proba=True
:
>>> formasaurus.extract_forms(html, proba=True, threshold=0.05) [(<Element form at 0x1150db408>, {'fields': {'q': {'search query': 0.999129068423436}}, 'form': {'search': 0.99580680143321776}}), (<Element form at 0x1150dbae8>, {'fields': {'user[email]': {'email': 0.9980438256540791}, 'user[login]': {'username': 0.9877912041558733}, 'user[password]': {'password': 0.9968113886622333}}, 'form': {'login': 0.12481875549840604, 'registration': 0.86248202363754578}})]
Note that Formasaurus is less certain about the second form type - it thinks most likely the form is a registration form (0.86%), but the form also looks similar to a login form (12%).
threshold
argument can be used to filter out low-probability options;
we used 0.05 in this example. To get probabilities of all classes use
threshold=0
.
If field types are not needed you can speed up processing using
fields=False
option. In this case 'fields' results won't be computed:
>>> formasaurus.extract_forms(html, fields=False) [(<Element form at 0x1150ba0e8>, {'form': 'search'}), (<Element form at 0x1150ba138>, {'form': 'registration'})]
To extract form and field types from individual form elements use :func:`formasaurus.classify <formasaurus.classifiers.classify>` or :func:`formasaurus.classify_proba <formasaurus.classifiers.classify_proba>`. They accept lxml <form> Elements. Let's load an HTML file using lxml:
>>> import lxml.html >>> tree = lxml.html.parse("http://google.com")
and then classify the first form on this page:
>>> form = tree.xpath('//form')[0] >>> formasaurus.classify(form) {'fields': {'btnG': 'submit button', 'btnI': 'submit button', 'q': 'search query'}, 'form': 'search'}>>> formasaurus.classify_proba(form, threshold=0.1) {'fields': {'btnG': {'submit button': 0.9254039698573596}, 'btnI': {'submit button': 0.9642014575642849}, 'q': {'search query': 0.9959819637966439}}, 'form': {'search': 0.98794025545508202}}
fields=False
arguments works here as well:
>>> formasaurus.classify_proba(form, threshold=0.1, fields=False) {'form': {'search': 0.98794025545508202}}
In this example the data is loaded from an URL; of course, data may be loaded from a local file or from an in-memory object, or you may already have the tree loaded (e.g. with Scrapy).
Formasaurus detects these form types:
precision recall f1-score support search 0.91 0.96 0.93 415 login 0.97 0.96 0.96 246 registration 0.95 0.88 0.91 165 password/login recovery 0.88 0.84 0.86 105 contact/comment 0.87 0.94 0.91 138 join mailing list 0.87 0.89 0.88 132 order/add to cart 0.94 0.64 0.76 74 other 0.66 0.69 0.68 143 avg / total 0.89 0.89 0.89 1418 88.9% forms are classified correctly.
Quality is estimated based on cross-validation results: all annotated data is split into 20 folds, then model is trained on 19 folds and tries to predict form types in the remaining fold. This is repeated to get predictions for the whole dataset.
See also: https://en.wikipedia.org/wiki/Precision_and_recall
By deafult, Formasaurus detects these field types:
username
password
password confirmation
- "enter the same password again"email
email confirmation
- "enter the same email again"username or email
- a field where both username and email are acceptedcaptcha
- image captcha or a puzzle to solvehoneypot
- this field usually should be left blankTOS confirmation
- "I agree with Terms of Service", "I agree to follow website rules", "It is OK to process my personal info", etc.receive emails confirmation
- a checkbox which means "yes, it is ok to send me some sort of emails"remember me checkbox
- common on login formssubmit button
- a button user should click to submit this formcancel button
reset/clear button
first name
last name
middle name
full name
organization name
gender
day
month
year
full date
time zone
DST
- Daylight saving time preferencecountry
city
state
address
- other address informationpostal code
phone
- phone number or its partfax
url
OpenID
about me text
comment text
comment title or subject
security question
- "mother's maiden name"answer to security question
search query
search category / refinement
- search parameter, filtering optionproduct quantity
style select
- style/theme select, common on forumssorting option
- asc/desc order, items per pageother number
other read-only
- field with information user shouldn't change- all other fields are classified as
other
.
Quality estimates (based on 20-fold cross-validation):
precision recall f1-score support username 0.82 0.91 0.86 202 password 1.00 0.99 0.99 368 password confirmation 0.98 0.99 0.99 103 email 0.94 0.97 0.96 615 email confirmation 0.96 0.82 0.88 28 username or email 0.75 0.33 0.46 36 captcha 0.81 0.81 0.81 96 honeypot 0.83 0.34 0.49 29 TOS confirmation 0.88 0.51 0.65 84 receive emails confirmation 0.35 0.57 0.43 87 remember me checkbox 0.96 1.00 0.98 119 submit button 0.94 0.98 0.96 380 cancel button 0.83 0.50 0.62 10 reset/clear button 1.00 0.83 0.91 12 first name 0.89 0.86 0.88 102 last name 0.87 0.85 0.86 101 middle name 1.00 0.57 0.73 7 full name 0.74 0.80 0.77 136 organization name 0.74 0.44 0.55 32 gender 0.95 0.81 0.88 75 time zone 1.00 0.71 0.83 7 DST 1.00 1.00 1.00 5 country 0.89 0.81 0.85 52 city 0.95 0.68 0.80 57 state 0.97 0.69 0.81 42 address 0.76 0.70 0.73 93 postal code 0.97 0.83 0.89 82 phone 0.83 0.84 0.83 110 fax 1.00 1.00 1.00 9 url 0.92 0.68 0.78 34 OpenID 1.00 0.75 0.86 4 about me text 0.62 0.38 0.48 13 comment text 0.88 0.91 0.90 135 comment title or subject 0.68 0.47 0.56 129 security question 0.67 0.22 0.33 9 answer to security question 0.67 0.29 0.40 7 search query 0.90 0.95 0.92 385 search category / refinement 0.92 0.94 0.93 518 product quantity 0.98 0.81 0.88 62 style select 0.94 1.00 0.97 15 sorting option 0.92 0.63 0.75 35 other number 0.32 0.24 0.27 34 full date 0.61 0.61 0.61 23 day 0.90 0.76 0.83 25 month 0.92 0.81 0.86 27 year 0.96 0.79 0.87 34 other read-only 0.91 0.36 0.51 28 other 0.66 0.77 0.71 773 avg / total 0.85 0.85 0.84 5369 84.5% fields are classified correctly. All fields are classified correctly in 76.1% forms.