-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathmain.cpp
336 lines (266 loc) · 11.6 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/**
* Open Space Program
* Copyright © 2019-2024 Open Space Program Project
*
* MIT License
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/**
* @file
* @brief A tutorial for the OSP framework; this is not much of a unit test.
*
* The framework...
* * stores arbitrary application data through DataIds.
* * uses osp/tasks to organize Tasks and how they access data. Pipelines and Tasks are not
* well-utilized here, so check out the 'test_tasks' unit test for more info.
* * is NOT a game engine. Framework does not force data structures into game objects or any of
* that BS. The programmer is free to represent the world through means that best fits the
* problem at hand (tic-tac-toe can be a 3x3 array).
* * is mostly just plain data and requires a separate executor to run it.
* * bundles Tasks and Data together into extremely composable 'Features'.
* * does witchcraft C++ metaprogramming. It's complicated and may not be worth trying to
* understand, but all it really does is write to osp::Framework, which is a simple struct.
*
*
* Question: Is this the right API?
*
* Task/Pipeline/Framework stuff is the result of many iterations of osp-magnum, being rewritten
* and simplified over the span of years to to what it is today.
*
* It is designed to cleanly represent the control flow in a complex simulation of vehicles with
* wiring and fuel flow moving across terrain in a conventional physics engine scene representing a
* part of huge planet with a rotating coordinate space that is part of an orbital simulation with
* everything intended to be moddable and extendable.
*
* This does it quite well so better be the correct API, or is at least close to the ideal solution.
*/
#include <osp/framework/executor.h>
#include <osp/framework/builder.h>
#include <osp/util/logging.h>
#include <spdlog/sinks/stdout_color_sinks.h>
#include <gtest/gtest.h>
using namespace osp;
using namespace osp::fw;
namespace test_a
{
enum class Stages { Modify, Read };
enum class OptionalPath { Signal, Schedule, Run, Done };
struct Aquarium
{
bool runMainLoop = true;
bool runAquariumUpdate = false;
//int waterLevel = 10;
};
struct AquariumFish
{
int fishCount = 10;
};
struct AquariumSharks
{
int sharkCount = 2;
};
// Feature Interfaces
// Feature Interfaces provide a way to share Data and Pipelines between Features. Features can
// Implement an Interface, and another Feature can DependOn it. This acts as a ayer of indirection
// that prevents Features from needing to directly depend on each other, which had been messy and
// inflexible in previous revisions of OSP.
//
// Metaprogramming does some magic to turn these FI* structs into DependOn<FIAquarium> or the
// return value of get_interface, "something.pl.somethingElse".
//
// 'something.di' is a FI*::DataIds, and 'something.pl' is a FI*::Pipelines.
//
// A postfix DI and PL are used to better show where these variables are coming from.
//
// The FI* structs themselves are never actually constructed.
struct FIMainLoop {
struct DataIds { };
struct Pipelines {
PipelineDef<OptionalPath> mainLoopPL;
};
};
struct FIAquarium {
struct DataIds {
DataId aquariumDI;
};
struct Pipelines {
PipelineDef<Stages> aquariumPL;
PipelineDef<OptionalPath> aquariumUpdatePL;
};
};
struct FIFish {
struct DataIds {
DataId fishDI;
};
struct Pipelines {
PipelineDef<Stages> fishPL;
};
};
struct FISharks {
struct DataIds {
DataId sharksDI;
};
struct Pipelines {
PipelineDef<Stages> sharksPL;
};
};
// Features
// feature_def(...) reads and iterates the function arguments of the given lambda and does stuff
// accordingly. Yes, this is possible to do in C++.
FeatureDef const ftrWorld = feature_def("World", [] (
FeatureBuilder &rFB,
Implement<FIMainLoop> mainLoop,
Implement<FIAquarium> aquarium)
{
rFB.data_emplace<Aquarium>(aquarium.di.aquariumDI);
// 'Signal' will stop the main loop pipeline from proceeding until exec.signal is called.
// If wait_for_signal isn't added to the main loop pipeline, then it will just infinite loop
// when exec.wait(fw) is called.
rFB.pipeline(mainLoop.pl.mainLoopPL).loops(true).wait_for_signal(OptionalPath::Signal);
rFB.pipeline(aquarium.pl.aquariumUpdatePL).parent(mainLoop.pl.mainLoopPL);
// Allow controlling the main loop so it can exit cleanly, controlled with runMainLoop.
rFB.task()
.name ("Schedule main loop")
.schedules ({mainLoop.pl.mainLoopPL(OptionalPath::Schedule)})
.args ({ aquarium.di.aquariumDI })
.func ([] (Aquarium const &rAquarium)
{
return rAquarium.runMainLoop ? TaskActions{} : TaskAction::Cancel;
});
// Running the aquarium update is optional and controlled with runAquariumUpdate.
// sync_with also ties aquariumUpdatePL to the main loop
rFB.task()
.name ("Schedule aquarium update")
.schedules ({aquarium.pl.aquariumUpdatePL(OptionalPath::Schedule)})
.sync_with ({mainLoop.pl.mainLoopPL(OptionalPath::Run)})
.args ({ aquarium.di.aquariumDI })
.func ([] (Aquarium const &rAquarium)
{
return rAquarium.runAquariumUpdate ? TaskActions{} : TaskAction::Cancel;
});
});
FeatureDef const ftrFish = feature_def("Fish", [] (
Implement<FIFish> fish,
FeatureBuilder &rFB, // For demonstration, argument order doesn't matter.
DependOn<FIAquarium> aquarium)
{
rFB.data_emplace<AquariumFish>(fish.di.fishDI);
rFB.pipeline(fish.pl.fishPL).parent(aquarium.pl.aquariumUpdatePL);
});
FeatureDef const ftrSharks = feature_def("Sharks", [] (
FeatureBuilder &rFB,
Implement<FISharks> sharks,
DependOn<FIAquarium> aquarium,
DependOn<FIFish> fish,
entt::any userData) // optional data can be passed in through add_feature
{
ASSERT_TRUE(entt::any_cast<std::string>(userData) == "user data!");
rFB.data_emplace<AquariumSharks>(sharks.di.sharksDI);
rFB.pipeline(sharks.pl.sharksPL).parent(aquarium.pl.aquariumUpdatePL);
// Runs every aquarium update
rFB.task()
.name ("Each shark eats a fish")
.run_on ({aquarium.pl.aquariumUpdatePL(OptionalPath::Run)})
.sync_with ({fish.pl.fishPL(Stages::Modify), sharks.pl.sharksPL(Stages::Read)})
.args ({ fish.di.fishDI, sharks.di.sharksDI })
.func ([] (AquariumFish &rFish, AquariumSharks const& rSharks)
{
rFish.fishCount -= rSharks.sharkCount;
});
});
} // namespace test_a
TEST(Tasks, Basics)
{
using namespace test_a;
auto pSink = std::make_shared<spdlog::sinks::stdout_color_sink_mt>();
osp::Logger_t logger = std::make_shared<spdlog::logger>("executor", pSink);
osp::set_thread_logger(logger);
Framework fw;
// Contexts adds a way to separate major sections of the Framework.
// Feature Interfaces are added per-context. A context can't have two of the same
// implementations of a Feature Interface. If we were to add two aquariums that are logically
// separated and can run in parallel, we can use two contexts.
ContextId const ctx = fw.m_contextIds.create();
ContextBuilder cb{ctx, {}, fw};
cb.add_feature(ftrWorld);
cb.add_feature(ftrFish);
cb.add_feature(ftrSharks, std::string{"user data!"});
ContextBuilder::finalize(std::move(cb));
auto const fish = fw.get_interface<FIFish>(ctx);
auto const mainLoop = fw.get_interface<FIMainLoop>(ctx);
auto const aquarium = fw.get_interface<FIAquarium>(ctx);
auto &rAquarium = fw.data_get<Aquarium>(aquarium.di.aquariumDI);
auto &rAquariumFish = fw.data_get<AquariumFish>(fish.di.fishDI);
SingleThreadedExecutor exec;
exec.load(fw);
exec.run(fw, mainLoop.pl.mainLoopPL);
exec.wait(fw);
ASSERT_TRUE(exec.is_running(fw)); // Main loop is started
EXPECT_EQ(rAquariumFish.fishCount, 10);
// Allow Main loop to iterate, but we don't yet do an aquarium update
exec.signal(fw, mainLoop.pl.mainLoopPL);
exec.wait(fw);
// No aquarium updates yet, all fish still alive
EXPECT_EQ(rAquariumFish.fishCount, 10);
// Start updating the aquarium
rAquarium.runAquariumUpdate = true;
exec.signal(fw, mainLoop.pl.mainLoopPL);
exec.wait(fw);
// Sharks have eaten 2 fish
EXPECT_EQ(rAquariumFish.fishCount, 8);
exec.signal(fw, mainLoop.pl.mainLoopPL);
exec.wait(fw);
// Sharks have eaten 2 more fish
EXPECT_EQ(rAquariumFish.fishCount, 6);
// Stop the main loop
rAquarium.runMainLoop = false;
exec.signal(fw, mainLoop.pl.mainLoopPL);
exec.wait(fw);
EXPECT_FALSE(exec.is_running(fw));
}
//-----------------------------------------------------------------------------
// Test metaprogramming used by framework
using Input_t = Stuple<int, float, char, std::string, double>;
using Output_t = filter_parameter_pack< Input_t, std::is_integral >::value;
static_assert(std::is_same_v<Output_t, Stuple<int, char>>);
// Test empty. Nothing is being tested, PRED_T can be anything.
template<typename T>
struct Useless{};
static_assert(std::is_same_v<filter_parameter_pack< Stuple<>, Useless >::value, Stuple<>>);
// Some janky technique to pass the parameter pack from stuple to a different type
template<typename ... T>
struct TargetType {};
// Create a template function with stuple<T...> as an argument, and call it with inferred template
// parameters to obtain the parameter pack. Return value can be used for the target type.
template<typename ... T>
constexpr TargetType<T...> why_cpp(Stuple<T...>) { };
using WhatHow_t = decltype(why_cpp(Output_t{}));
static_assert(std::is_same_v<WhatHow_t, TargetType<int, char>>);
using Lambda_t = decltype([] (int a, float b) { return 'c'; });
using FuncPtr_t = char(*)(int, float);
static_assert(std::is_same_v< as_function_ptr_t<Lambda_t>, FuncPtr_t >);
static_assert(std::is_same_v< as_function_ptr_t<FuncPtr_t>, char(*)(int, float) >);
inline void notused()
{
int asdf = 69;
[[maybe_unused]] auto lambdaWithCapture = [asdf] (int a, float b) { return 'c'; };
using LambdaWithCapture_t = decltype(lambdaWithCapture);
static_assert( ! CStatelessLambda<LambdaWithCapture_t> );
}