-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathNEGF-mulp.py
221 lines (161 loc) · 5.9 KB
/
NEGF-mulp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/usr/bin/env python
#
# NEGF-mulp.py is a sclipt to obtain the phonon transmission function
# for each k-point by using the hessian file in ALAMODE.
#
#
# Copyright (c) 2018 Yuto Tanaka
#
"""
--- How to use ---
$ python NEGF-mulp.py --negf=(prefix)_negf.in --hessian=(prefix).hessian (--nt=1)
You can skip the --nt option, which is specify the number of thread.
The default value is the thread limit on you environment.
"""
import argparse
import time
import multiprocessing as mp
from multiprocessing import Pool
import numpy as np
import numpy.linalg as LA
import mod_dymat as dymat
usage = "usage: %prog [options]"
parser = argparse.ArgumentParser(usage=usage)
parser.add_argument("--negf", help="negf file")
parser.add_argument("--hessian", help="hessian file")
parser.add_argument("--nt", help="hessian file",
type=int, default=mp.cpu_count())
cm = 3634.87331806918 # convert to cm^{-1}
def surface_green(nat, OMG_s, D_s):
N_atom = 3 * nat
ep_s = OMG_s - (D_s[:N_atom, :N_atom])
ep = OMG_s - (D_s[:N_atom, :N_atom])
alpha = (D_s[:N_atom, N_atom:])
beta = (D_s[N_atom:, :N_atom])
G_0 = LA.inv(ep_s)
norm_G = 1.0
while norm_G > criterion:
ep_inv = LA.inv(ep)
a = np.dot(ep_inv, alpha)
b = np.dot(ep_inv, beta)
ep_s -= np.dot(alpha, b)
ep -= np.dot(beta, a) + np.dot(alpha, b)
alpha = np.dot(alpha, a)
beta = np.dot(beta, b)
G = LA.inv(ep_s)
norm_G = LA.norm(G - G_0)
G_0 = G
return G
def transmission(i, nat):
omega = i * grid
omega2 = (omega)**2 + 1e-10
OMG = omega2 * (1 + delta*1j)
# Frequency
OMG_c = OMG * np.identity(9 * nat, dtype=np.complex128)
OMG_s = OMG * np.identity(3 * nat, dtype=np.complex128)
# coupling term in dynamical matrix
D_lc = np.conjugate(D_cl.T)
D_rc = np.conjugate(D_cr.T)
# Surface Green's function
G_l = surface_green(nat, OMG_s, D_s[::-1, ::-1])[::-1, ::-1]
G_r = surface_green(nat, OMG_s, D_s)
# Self energy
Self_l = np.dot(D_cl, np.dot(G_l, D_lc))
Self_r = np.dot(D_cr, np.dot(G_r, D_rc))
# Green's function in the scattering ragion
G_c = LA.inv(OMG_c - D_c - (Self_l + Self_r))
G_c_her = np.conjugate(G_c.T)
# Gamma (spectral density)
Gamma_l = (Self_l - np.conjugate(Self_l.T)) * 1j
Gamma_r = (Self_r - np.conjugate(Self_r.T)) * 1j
return omega * cm, np.trace(np.dot(Gamma_l, np.dot(G_c, np.dot(Gamma_r, G_c_her)))).real
def generate_qmesh(kpoint, tran_direct):
num_q = kpoint[0] * kpoint[1] * kpoint[2]
q = np.zeros([num_q, 3])
var_idx = [i for i, x in enumerate(tran_direct) if x == 0]
fix_idx = [i for i, x in enumerate(tran_direct) if x == 1][0]
bz = [[], [], []]
bz[fix_idx].append(0.0)
for i in var_idx:
dq = 1 / (kpoint[i] + 1)
qx = -0.5 + dq
xx = 0.5 - dq * 0.01
while qx < xx:
bz[i].append(qx)
qx += dq
q_count = 0
for i in range(kpoint[0]):
for j in range(kpoint[1]):
for k in range(kpoint[2]):
q[q_count] = np.array([bz[0][i], bz[1][j], bz[2][k]])
q_count += 1
return q, var_idx
def get_qpoint(qmesh, revec):
return qmesh[0] * revec[0] + qmesh[1] * revec[1] + qmesh[2] * revec[2]
def wrapper_transmission(args):
return transmission(*args)
def main():
# grobalization
global delta, criterion, grid
global D_c, D_s, D_cl, D_cr
start = time.time()
options = parser.parse_args()
if options.negf:
negf_file = options.negf
else:
print("negf file is not selected.")
if options.hessian:
hessian_file = options.hessian
else:
print("hessian file is not selected.")
if options.nt:
num_thread = options.nt
print("The number of thread : " + str(num_thread))
if num_thread > mp.cpu_count():
print("The number of thread specified by you is larger \
than the thread limit on your environment.")
exit(1)
prefix = negf_file.split('.')[0]
# read negf file
x_bohr, k_atom, nat, mass, lavec, univec, revec, tran_direct, kpoint, \
cutoff, delta, freq_max, criterion, step = dymat.read_negf(negf_file)
# supercell infomation
lmn = dymat.supercell(lavec, univec)
# shift parameter
dymat.make_shift_list(lmn)
# atoms in unitcell atom_uc = [1, ..., nat_unitcell]
atom_uc = dymat.atom_in_unitcell(x_bohr, univec, nat)
nat_uc = len(atom_uc) # number of atoms in unit cell
# considerable atom pairs for fcs
pairs = dymat.generate_pairs(atom_uc, x_bohr, lavec, univec, nat, cutoff)
# mapping equivalant atom in unit cell
map_uc = dymat.mapping(x_bohr, univec, atom_uc, nat, lmn)
# atomic mass in uni tcell
mass_uc = dymat.mass_in_unitcell(mass, k_atom, atom_uc)
# store fcs matrix
fcs = dymat.store_all_fcs(hessian_file, atom_uc,
nat_uc, pairs, map_uc, mass_uc)
# obtain k-point in 1st BZ and transport direction index
qmesh, var_idx = generate_qmesh(kpoint, tran_direct)
q_count = 0
freq_max /= cm
grid = float(freq_max) / step
wrap = [[s, nat_uc] for s in range(step)]
for i in range(kpoint[var_idx[0]]):
for j in range(kpoint[var_idx[1]]):
outfile = prefix + ".tran" + str(i) + "_" + str(j)
print(outfile)
tran_data = np.zeros([step, 2])
q = get_qpoint(qmesh[q_count], revec)
q_count += 1
# Dynamical matrix
D_c, D_s, D_cl, D_cr = dymat.generate_dynamical_matrix(
fcs, q, nat_uc, univec, tran_direct)
p = Pool(num_thread)
Tran = p.map(wrapper_transmission, wrap)
p.close()
tran_data = np.array(Tran)
np.savetxt(outfile, tran_data, delimiter=' ')
print(time.time() - start, "seconds")
if __name__ == "__main__":
main()