-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathphtherm.py
155 lines (117 loc) · 4.47 KB
/
phtherm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python
#
# kappa.py
#
# script to calculate thermal conductance from the result of transmittance
#
#
# Copyright (c) 2018 Yuto Tanaka
#
"""
--- How to use ---
$ python phtherm.py --tran=(prefix).tran (--Tmin=0 --Tmax=1000 --dT=10)
--- default parameter---
Tmin = 0 K
Tmax = 1000 K
dT = 10 K
"""
import argparse
import math
import numpy as np
usage = "usage: %prog [options]"
parser = argparse.ArgumentParser(usage=usage)
parser.add_argument("tran", help="tran file")
parser.add_argument("--Tmin", action="store", default="0",
help="print the minimum temperature you want to calculate.")
parser.add_argument("--Tmax", action="store", default="1000",
help="print the maximum temperature you want to calculate.")
parser.add_argument("--dT", action="store", default="10",
help="print the width of temperature. Default is 10 K")
# parameters
BOLTHZ_CONST = 8.6173303e-5 # Boltzmann constant (ev / K)
HBAR = 6.582119514e-16 # Dirac constant (eV * s)
LIGHT_SPEED = 2.99792458e+10 # speed of light (cm / s)
EV_UNIT = 1.60217662e-19 # (J / eV)
DELTA = 1e-14 # parameter to avoid divergence in bose_function
def bose_function(x):
return 1 / (np.exp(x + DELTA) - 1)
def dist_func(x):
gx = np.exp(x) * (x * bose_function(x)) ** 2
gx[0] = 1.0
return gx
class PhThermCondCalculator:
def __init__(self):
self.__tran_file = ""
self.__phtherm_file = ""
self.__T_min = 0
self.__T_max = 1000
self.__T_width = 10
def __set_parameters(self):
options = parser.parse_args()
if options.tran:
self.__tran_file = options.tran
prefix = self.__tran_file.split(".")[0]
self.__phtherm_file = prefix + ".phtherm"
else:
print("tran file is not selected.")
exit(1)
if options.Tmin:
self.__T_min = float(options.Tmin)
print("The minimum tempreature : %3.1f K" % (self.__T_min))
if self.__T_min < 0:
print("Specified temperature is negative.")
exit(1)
if options.Tmax:
self.__T_max = float(options.Tmax)
print("The maximum tempreature : %3.1f K" % (self.__T_max))
if self.__T_min > self.__T_max:
print("Tmin is larger than Tmax. Check arguments.")
exit(1)
if options.dT:
self.__T_width = float(options.dT)
if self.__T_max == self.__T_min:
self.__T_width = 0
print("The tempreature width : %3.1f K" % (self.__T_width))
def __calc_phtherm(self, omega, tran, T):
num_data = np.shape(omega)[0]
beta = 1 / (BOLTHZ_CONST * T)
omega_bar = 2.0 * math.pi * beta * HBAR * LIGHT_SPEED * omega # dimensionless
gx = dist_func(omega_bar) * tran # Integrand
delta_omega = omega[1] - omega[0]
# Integration (Trapezoidal method)
phtherm = 0.5 * (gx[0] + gx[num_data-1])
for i in range(1, num_data-2):
phtherm += gx[i]
fac = EV_UNIT * BOLTHZ_CONST * LIGHT_SPEED * delta_omega
phtherm *= fac # unit : (W/K)
return phtherm
def start_calculation(self):
self.__set_parameters()
# Load and initialize
if self.__T_width != 0:
step = int((self.__T_max - self.__T_min) / self.__T_width) + 1
else:
step = 1
phtherm_data = np.zeros([step, 2]) # Initialize phonon thermal conductance data
data = np.loadtxt(self.__tran_file) # Load transmittance data file
omega = data.T[0] # Frequency
tran = data.T[1] # Transmittance
# Loop for temperature
for i in range(step):
temperature = float(i * self.__T_width + self.__T_min) # Temperature (K)
if temperature > 0:
# calculate thermal conductance
phtherm = self.__calc_phtherm(omega, tran, temperature)
else:
phtherm = 0.0
phtherm_data[i][0] = temperature
phtherm_data[i][1] = phtherm
# save kappa_phonon data
np.savetxt(self.__phtherm_file, phtherm_data, delimiter=' ')
print(self.__phtherm_file + " was generated.")
def main():
# generate instance
phtherm_calc = PhThermCondCalculator()
phtherm_calc.start_calculation()
if __name__ == "__main__":
main()