The code interpreter in OpenAI's GPT is a powerful tool that enables complex and interactive coding capabilities within a safe and sandboxed environment. This README provides examples of advanced applications, demonstrating how to leverage this tool for sophisticated tasks.
- Introduction
- Data Analysis and Visualization
- Machine Learning Applications
- Advanced Data Processing
- Web Scraping
- Natural Language Processing
- Image Processing
- Interactive Widgets
- Troubleshooting
- Contributing
- Credits
This document aims to showcase the advanced capabilities of the code interpreter in OpenAI's GPT. From data analysis and machine learning to web scraping and image processing, the examples provided here are intended to help users unlock the full potential of this tool.
Performing advanced data analysis and visualizing the results using pandas
and matplotlib
.
import pandas as pd
import matplotlib.pyplot as plt
# Load a complex dataset
df = pd.read_csv('/mnt/data/complex_data.csv')
# Perform data cleaning and preprocessing
df = df.dropna()
df['date'] = pd.to_datetime(df['date'])
# Analyze and visualize data
pivot_table = df.pivot_table(index='date', values='sales', aggfunc='sum')
pivot_table.plot(figsize=(10, 6), title='Sales Over Time')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.grid(True)
plt.savefig('/mnt/data/sales_over_time.png')
plt.show()
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
# Load the dataset
df = pd.read_csv('/mnt/data/ml_dataset.csv')
# Prepare the data
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train a Random Forest model
model = RandomForestRegressor(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Make predictions and evaluate the model
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
import pandas as pd
# Load multiple datasets
df1 = pd.read_csv('/mnt/data/data1.csv')
df2 = pd.read_csv('/mnt/data/data2.csv')
df3 = pd.read_csv('/mnt/data/data3.csv')
# Merge datasets
merged_df = pd.merge(df1, df2, on='common_column')
merged_df = pd.merge(merged_df, df3, on='another_common_column')
# Display the merged dataframe
print(merged_df.head())
maybe usefull? Python-XPath Tutorial | JavaScript-XPath Tutorial
import requests
from bs4 import BeautifulSoup
# Send a request to the webpage
url = 'https://example.com/data-page'
response = requests.get(url)
# Parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Extract specific data
data = []
table = soup.find('table', {'id': 'data-table'})
for row in table.find_all('tr'):
columns = row.find_all('td')
row_data = [col.text for col in columns]
data.append(row_data)
# Display the scraped data
for item in data:
print(item)
from textblob import TextBlob
# Example text
text = "OpenAI's GPT is amazing. I'm so happy with the results!"
# Perform sentiment analysis
blob = TextBlob(text)
sentiment = blob.sentiment
# Display the sentiment
print(f'Sentiment: {sentiment}')
from PIL import Image, ImageEnhance, ImageFilter
# Open an image file
img = Image.open('/mnt/data/sample_image.jpg')
# Apply enhancements and filters
enhancer = ImageEnhance.Contrast(img)
img_enhanced = enhancer.enhance(2)
img_filtered = img_enhanced.filter(ImageFilter.DETAIL)
# Save the processed image
img_filtered.save('/mnt/data/processed_image.jpg')
# Display the processed image
img_filtered.show()
import ipywidgets as widgets
from IPython.display import display
# Create a slider widget
slider = widgets.IntSlider(value=10, min=0, max=100, step=1, description='Value:')
# Define an event handler
def on_value_change(change):
print(f'Slider value: {change["new"]}')
# Attach the event handler to the slider
slider.observe(on_value_change, names='value')
# Display the slider
display(slider)
ImportError: No module named '...'
: Ensure that all required libraries are installed. Usepip install <library_name>
to install any missing libraries.FileNotFoundError: [Errno 2] No such file or directory: '...'
: Check the file path and ensure that the file is in the correct directory. Use absolute paths or ensure that the file is saved in/mnt/data
.PermissionError: [Errno 13] Permission denied: '...'
: Ensure that you have permissions to read and write in the/mnt/data
directory.
Contributions are welcome! Please feel free to submit a pull request.
- Link to ChatGPT Shellmaster
- GPT-Security-Best-Practices
- OpenAi cost calculator
- GPT over CLI
- Secure Implementation of Artificial Intelligence (AI)
- Comments Reply with GPT (davinci3)
- Basic GPT Webinterface
- Volkan Kücükbudak //NCF
- and OpenAI's ChatGPT4 with Code Interpreter for providing interactive coding assistance and insights & tipps.
- Become a Sponsor: Link to my sponsorship page
- ⭐ my projects: Starring projects on GitHub helps increase their visibility and can help others find my work.
- Follow me: Stay updated with my latest projects and releases.
- Source of this resposerity