forked from Hao840/vanillaKD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
217 lines (185 loc) · 9.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import logging
import os
import time
from datetime import datetime
import numpy as np
from timm.data import ImageDataset
from timm.data.mixup import Mixup, mixup_target
from timm.utils import CheckpointSaver, unwrap_model
class ImageNetInstanceSample(ImageDataset):
""": Folder datasets which returns (img, label, index, contrast_index):
"""
def __init__(self, root, name, class_map, load_bytes, is_sample=False, k=4096, **kwargs):
super().__init__(root, parser=name, class_map=class_map, load_bytes=load_bytes, **kwargs)
self.k = k
self.is_sample = is_sample
if self.is_sample:
print('preparing contrastive data...')
num_classes = 1000
num_samples = len(self.parser)
label = np.zeros(num_samples, dtype=np.int32)
for i in range(num_samples):
_, target = self.parser[i]
label[i] = target
self.cls_positive = [[] for _ in range(num_classes)]
for i in range(num_samples):
self.cls_positive[label[i]].append(i)
self.cls_negative = [[] for _ in range(num_classes)]
for i in range(num_classes):
for j in range(num_classes):
if j == i:
continue
self.cls_negative[i].extend(self.cls_positive[j])
self.cls_positive = [np.asarray(self.cls_positive[i], dtype=np.int32) for i in range(num_classes)]
self.cls_negative = [np.asarray(self.cls_negative[i], dtype=np.int32) for i in range(num_classes)]
print('done.')
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
img, target = super().__getitem__(index)
if self.is_sample:
# sample contrastive examples
pos_idx = index
neg_idx = np.random.choice(self.cls_negative[target], self.k, replace=True)
sample_idx = np.hstack((np.asarray([pos_idx]), neg_idx))
return img, target, index, sample_idx
else:
return img, target, index
class MultiSmoothingMixup(Mixup):
def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5,
mode='batch', correct_lam=True, smoothings=(0.1,), num_classes=1000):
super(MultiSmoothingMixup, self).__init__(mixup_alpha, cutmix_alpha, cutmix_minmax, prob, switch_prob,
mode, correct_lam, 0, num_classes)
self.smoothings = smoothings
def __call__(self, x, target):
assert len(x) % 2 == 0, 'Batch size should be even when using this'
if self.mode == 'elem':
lam = self._mix_elem(x)
elif self.mode == 'pair':
lam = self._mix_pair(x)
else:
lam = self._mix_batch(x)
targets = []
for smoothing in self.smoothings:
targets.append(mixup_target(target, self.num_classes, lam, smoothing, x.device))
return x, targets
class CheckpointSaverWithLogger(CheckpointSaver):
def __init__(
self,
logger,
model,
optimizer,
args=None,
model_ema=None,
amp_scaler=None,
checkpoint_prefix='checkpoint',
recovery_prefix='recovery',
checkpoint_dir='',
recovery_dir='',
decreasing=False,
max_history=10,
unwrap_fn=unwrap_model):
super(CheckpointSaverWithLogger, self).__init__(model, optimizer, args, model_ema, amp_scaler,
checkpoint_prefix, recovery_prefix, checkpoint_dir,
recovery_dir, decreasing, max_history, unwrap_fn)
self.logger = logger
def save_checkpoint(self, epoch, metric=None):
assert epoch >= 0
tmp_save_path = os.path.join(self.checkpoint_dir, 'tmp' + self.extension)
last_save_path = os.path.join(self.checkpoint_dir, 'last' + self.extension)
self._save(tmp_save_path, epoch, metric)
if os.path.exists(last_save_path):
os.unlink(last_save_path) # required for Windows support.
os.rename(tmp_save_path, last_save_path)
worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None
if (len(self.checkpoint_files) < self.max_history
or metric is None or self.cmp(metric, worst_file[1])):
if len(self.checkpoint_files) >= self.max_history:
self._cleanup_checkpoints(1)
filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension
save_path = os.path.join(self.checkpoint_dir, filename)
os.link(last_save_path, save_path)
self.checkpoint_files.append((save_path, metric))
self.checkpoint_files = sorted(
self.checkpoint_files, key=lambda x: x[1],
reverse=not self.decreasing) # sort in descending order if a lower metric is not better
checkpoints_str = "Current checkpoints:\n"
for c in self.checkpoint_files:
checkpoints_str += ' {}\n'.format(c)
self.logger.info(checkpoints_str)
if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)):
self.best_epoch = epoch
self.best_metric = metric
best_save_path = os.path.join(self.checkpoint_dir, 'model_best' + self.extension)
if os.path.exists(best_save_path):
os.unlink(best_save_path)
os.link(last_save_path, best_save_path)
return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch)
def _cleanup_checkpoints(self, trim=0):
trim = min(len(self.checkpoint_files), trim)
delete_index = self.max_history - trim
if delete_index < 0 or len(self.checkpoint_files) <= delete_index:
return
to_delete = self.checkpoint_files[delete_index:]
for d in to_delete:
try:
self.logger.debug("Cleaning checkpoint: {}".format(d))
os.remove(d[0])
except Exception as e:
self.logger.error("Exception '{}' while deleting checkpoint".format(e))
self.checkpoint_files = self.checkpoint_files[:delete_index]
def save_recovery(self, epoch, batch_idx=0):
assert epoch >= 0
filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension
save_path = os.path.join(self.recovery_dir, filename)
self._save(save_path, epoch)
if os.path.exists(self.last_recovery_file):
try:
self.logger.debug("Cleaning recovery: {}".format(self.last_recovery_file))
os.remove(self.last_recovery_file)
except Exception as e:
self.logger.error("Exception '{}' while removing {}".format(e, self.last_recovery_file))
self.last_recovery_file = self.curr_recovery_file
self.curr_recovery_file = save_path
def setup_default_logging(logger, default_level=logging.INFO, log_path=''):
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter("%(name)15s: %(message)s")
console_handler.setFormatter(console_formatter)
# console_handler.setFormatter(FormatterNoInfo())
logger.addHandler(console_handler)
logger.setLevel(default_level)
if log_path:
file_handler = logging.FileHandler(log_path)
file_formatter = logging.Formatter("%(asctime)s - %(name)20s: [%(levelname)8s] - %(message)s")
file_handler.setFormatter(file_formatter)
logger.addHandler(file_handler)
class TimePredictor:
def __init__(self, steps, most_recent=30, drop_first=True):
self.init_time = time.time()
self.steps = steps
self.most_recent = most_recent
self.drop_first = drop_first # drop iter 0
self.time_list = []
self.temp_time = self.init_time
def update(self):
time_interval = time.time() - self.temp_time
self.time_list.append(time_interval)
if self.drop_first and len(self.time_list) > 1:
self.time_list = self.time_list[1:]
self.drop_first = False
self.time_list = self.time_list[-self.most_recent:]
self.temp_time = time.time()
def get_pred_text(self):
single_step_time = np.mean(self.time_list)
end_timestamp = self.init_time + single_step_time * self.steps
return datetime.fromtimestamp(end_timestamp).strftime('%Y-%m-%d %H:%M:%S')
def process_feat(distiller, source_feat):
if getattr(distiller, 'pre_act_feat', False):
feat = source_feat[0]
else:
feat = source_feat[1]
return feat