-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsignaldata.py
52 lines (45 loc) · 2.12 KB
/
signaldata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch.utils.data as data
import numpy as np
import torch
from loaddataset import DataSet, DataSetEval
from torchvision import transforms
class SignalData(data.Dataset):
def __init__(self, train=True, transform=None, target_transform=None):
path_dataset = './data/RML2016.10a_dict.pkl'
dataset = DataSet(path_dataset)
X_train, Y_train, X_test, Y_test, classes = dataset.getTrainAndTest()
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set
self.classes = classes
if self.train:
self.train_data, self.train_labels = torch.from_numpy(np.array(X_train).reshape(-1, 16, 16)), \
torch.from_numpy(np.array(Y_train))
else:
self.test_data, self.test_labels = torch.from_numpy(np.array(X_test).reshape(-1, 16, 16)), \
torch.from_numpy(np.array(Y_test))
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
class SignalDataEval(data.Dataset):
def __init__(self, train=True, transform=None, target_transform=None):
path_dataset = './data/RML2016.10a_dict.pkl'
dataset = DataSetEval(path_dataset)
X_train, Y_train, X_test, Y_test, classes = dataset.getTrainAndTest()
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set
self.classes = classes
if self.train:
self.train_data, self.train_labels = torch.from_numpy(np.array(X_train).reshape(-1, 16, 16)), \
torch.from_numpy(np.array(Y_train))
else:
self.test_data, self.test_labels = torch.from_numpy(np.array(X_test).reshape(-1, 16, 16)), \
torch.from_numpy(np.array(Y_test))
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)