-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathudip_model.py
132 lines (112 loc) · 4.79 KB
/
udip_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
from torch import nn
class model_AE(nn.Module):
def __init__(self, dim):
super().__init__()
self.hidden_dim = dim
self.first_cnn = self.first_CNN_block(1, 16)
self.first_max_poold = self.max_poold((1, 1, 1))
self.first_encoder = self.encoder_block(16, 32)
self.second_max_poold = self.max_poold((0, 1, 0))
self.second_encoder = self.encoder_block(32, 64)
self.third_max_poold = self.max_poold((1, 0, 1))
self.third_encoder = self.encoder_block(64, 128)
self.fourth_max_poold = self.max_poold((0, 0, 0))
self.fourth_encoder = self.encoder_block(128, 256)
self.encoding_mlp = torch.nn.Linear(256 * 12 * 14 * 12, self.hidden_dim)
self.decoding_mlp = torch.nn.Linear(
self.hidden_dim, 256 * 12 * 14 * 12
) # 128000
self.first_decoder = self.decoder_block(256, 128)
self.first_transconv = self.conv_transpose(128, input_padding=(0, 0, 0))
self.second_decoder = self.decoder_block(128, 64)
self.second_transconv = self.conv_transpose(64, input_padding=(1, 0, 1))
self.third_decoder = self.decoder_block(64, 32)
self.third_transconv = self.conv_transpose(32, input_padding=(0, 1, 0))
self.fourth_decoder = self.decoder_block(32, 16)
self.fourth_transconv = self.conv_transpose(16, input_padding=(1, 1, 1))
self.last_cnn = self.last_CNN_block(16, 1)
def max_poold(self, max_padding):
max_pd = nn.MaxPool3d(kernel_size=2, padding=max_padding)
return max_pd
def encoder_block(self, input_channels, output_channels, padding=1):
encoder = nn.Sequential(
nn.Conv3d(input_channels, output_channels, kernel_size=3, padding=padding,),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(
output_channels, output_channels, kernel_size=3, padding=padding,
),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
)
return encoder
def conv_transpose(self, output_channels, input_padding):
conv_t = nn.ConvTranspose3d(
output_channels,
output_channels,
kernel_size=2,
stride=2,
padding=input_padding,
)
return conv_t
def decoder_block(self, input_channels, output_channels, input_padding=(0, 0, 0)):
decoder = nn.Sequential(
nn.Conv3d(input_channels, output_channels, kernel_size=3, padding=1,),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(output_channels, output_channels, kernel_size=3, padding=1),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
)
return decoder
def first_CNN_block(self, input_channels, output_channels, padding=1):
cnn_block = nn.Sequential(
nn.Conv3d(input_channels, output_channels, kernel_size=3, padding=padding,),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(
output_channels, output_channels, kernel_size=3, padding=padding,
),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
)
return cnn_block
def last_CNN_block(self, input_channels, output_channels, padding=1):
cnn_block = nn.Sequential(
nn.Conv3d(input_channels, input_channels, kernel_size=3, padding=padding),
nn.BatchNorm3d(input_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(input_channels, input_channels, kernel_size=3, padding=padding),
nn.BatchNorm3d(input_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(input_channels, output_channels, kernel_size=1),
)
return cnn_block
def forward(self, x):
x = self.first_cnn(x)
x = self.first_max_poold(x)
x = self.first_encoder(x)
x = self.second_max_poold(x)
x = self.second_encoder(x)
x = self.third_max_poold(x)
x = self.third_encoder(x)
x = self.fourth_max_poold(x)
x = self.fourth_encoder(x)
shape = x.size()
enc_features = torch.flatten(
x, start_dim=1, end_dim=-1
)
lin1 = self.encoding_mlp(enc_features)
dec = self.decoding_mlp(lin1)
dec = dec.view(shape)
dec = self.first_decoder(dec)
dec = self.first_transconv(dec)
dec = self.second_decoder(dec)
dec = self.second_transconv(dec)
dec = self.third_decoder(dec)
dec = self.third_transconv(dec)
dec = self.fourth_decoder(dec)
dec = self.fourth_transconv(dec)
recon = self.last_cnn(dec)
return recon, lin1