-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathengine_128_T2.py
289 lines (241 loc) · 9.59 KB
/
engine_128_T2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# imports
# PyTorch
import torch
from torch.nn import functional as F
from torch import nn
from torch.optim.lr_scheduler import ReduceLROnPlateau
# PyTorch Lightning
import pytorch_lightning as pl
from pytorch_lightning.callbacks import (
LearningRateMonitor,
ModelCheckpoint,
ProgressBar,
)
from pytorch_lightning.loggers import TensorBoardLogger, CSVLogger
# Custom imports
from dataset import *
# Model architecture and forward pass to Pytorch lightning module.
class engine_AE(pl.LightningModule):
def __init__(self, lr):
super().__init__()
self.save_hyperparameters()
self.hidden_dim = 128 # hidden dimension for latent space used as endophenotype
# defining layers
# first CNN block
self.first_cnn = self.first_CNN_block(1, 16)
# encoders
self.first_max_poold = self.max_poold((1, 1, 1))
self.first_encoder = self.encoder_block(16, 32)
self.second_max_poold = self.max_poold((0, 1, 0))
self.second_encoder = self.encoder_block(32, 64)
self.third_max_poold = self.max_poold((1, 0, 1))
self.third_encoder = self.encoder_block(64, 128)
self.fourth_max_poold = self.max_poold((0, 0, 0))
self.fourth_encoder = self.encoder_block(128, 256)
# latent space
self.encoding_mlp = torch.nn.Linear(256 * 12 * 14 * 12, self.hidden_dim)
self.decoding_mlp = torch.nn.Linear(self.hidden_dim, 256 * 12 * 14 * 12)
# decoders
self.first_decoder = self.decoder_block(256, 128)
self.first_transconv = self.conv_transpose(128, input_padding=(0, 0, 0))
self.second_decoder = self.decoder_block(128, 64)
self.second_transconv = self.conv_transpose(64, input_padding=(1, 0, 1))
self.third_decoder = self.decoder_block(64, 32)
self.third_transconv = self.conv_transpose(32, input_padding=(0, 1, 0))
self.fourth_decoder = self.decoder_block(32, 16)
self.fourth_transconv = self.conv_transpose(16, input_padding=(1, 1, 1))
# last CNN block
self.last_cnn = self.last_CNN_block(16, 1)
# loss function to be used in training loop
self.train_loss_function1 = torch.nn.MSELoss(
size_average=None, reduce=None, reduction="none"
)
# loss function to be used in validation loop
self.valid_loss_function = torch.nn.MSELoss(
size_average=None, reduce=None, reduction="none"
)
def max_poold(self, max_padding):
max_pd = nn.MaxPool3d(kernel_size=2, padding=max_padding)
return max_pd
def encoder_block(self, input_channels, output_channels, padding=1):
encoder = nn.Sequential(
nn.Conv3d(input_channels, output_channels, kernel_size=3, padding=padding,),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(
output_channels, output_channels, kernel_size=3, padding=padding,
),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
)
return encoder
def conv_transpose(self, output_channels, input_padding):
conv_t = nn.ConvTranspose3d(
output_channels,
output_channels,
kernel_size=2,
stride=2,
padding=input_padding,
)
return conv_t
def decoder_block(self, input_channels, output_channels, input_padding=(0, 0, 0)):
decoder = nn.Sequential(
nn.Conv3d(input_channels, output_channels, kernel_size=3, padding=1,),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(output_channels, output_channels, kernel_size=3, padding=1),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
)
return decoder
def first_CNN_block(self, input_channels, output_channels, padding=1):
cnn_block = nn.Sequential(
nn.Conv3d(input_channels, output_channels, kernel_size=3, padding=padding,),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(
output_channels, output_channels, kernel_size=3, padding=padding,
),
nn.BatchNorm3d(output_channels),
nn.LeakyReLU(inplace=True),
)
return cnn_block
def last_CNN_block(self, input_channels, output_channels, padding=1):
cnn_block = nn.Sequential(
nn.Conv3d(input_channels, input_channels, kernel_size=3, padding=padding),
nn.BatchNorm3d(input_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(input_channels, input_channels, kernel_size=3, padding=padding),
nn.BatchNorm3d(input_channels),
nn.LeakyReLU(inplace=True),
nn.Conv3d(input_channels, output_channels, kernel_size=1),
)
return cnn_block
# Forward function
def forward(self, x):
x = self.first_cnn(x) # 1,16,182,218,182
x = self.first_max_poold(x) # 1,16,92,110,92
x = self.first_encoder(x) # 1,32,92,110,92
x = self.second_max_poold(x) # 1,32,46,56,46
x = self.second_encoder(x) # 1,64,46,56,46
x = self.third_max_poold(x) # 1,64,24,28,24
x = self.third_encoder(x) # 1,128,24,28,24
x = self.fourth_max_poold(x) # 1,128,12,14,12
x = self.fourth_encoder(x) # 1,256,12,14,12
shape = x.size()
# flattening encoder output
enc_features = torch.flatten(
x, start_dim=1, end_dim=-1
) # to keep batch dimension intact
lin1 = self.encoding_mlp(enc_features) # 1,128
# Going from hidden dimension to original image recon
dec = self.decoding_mlp(lin1) # 1,516096
dec = dec.view(shape) # 1,256,12,14,12
dec = self.first_decoder(dec) # 1,128,12,14,12
dec = self.first_transconv(dec) # 1,128,24,28,24
dec = self.second_decoder(dec) # 1,64,24,28,24
dec = self.second_transconv(dec) # 1,64,46,56,46
dec = self.third_decoder(dec) # 1,32,46,56,46
dec = self.third_transconv(dec) # 1,32,92,110,92
dec = self.fourth_decoder(dec) # 1,16,92,110,92
dec = self.fourth_transconv(dec) # 1,16,182,218,182
recon = self.last_cnn(dec) # 1, 182, 218, 182
return recon, lin1
# pytorch lightning training step
def training_step(self, batch, batch_idx):
# x, reg_input = batch
x, mask = batch
recon, _ = self(x)
loss1 = self.train_loss_function1(x, recon)
loss1 = loss1.squeeze(1) * mask
loss1 = loss1.sum()
loss1 = loss1 / mask.sum()
# loss2 = self.train_loss_function(reg_input, reg)
# loss = loss1 + loss2
self.log("train_loss", loss1, prog_bar=True)
return loss1
# pytorch lightning validation step
def validation_step(self, batch, batch_idx):
x, mask = batch
recon, _ = self(x)
loss1 = self.valid_loss_function(x, recon)
loss1 = loss1.squeeze(1) * mask
loss1 = loss1.sum()
loss1 = loss1 / mask.sum()
# loss2 = self.train_loss_function(reg_input, reg)
# loss = loss1 + loss2
self.log("val_loss", loss1, prog_bar=True, sync_dist=True)
return loss1
# pytorch lightning optimizer configuration
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams["lr"])
lr_scheduler_config = {
"scheduler": ReduceLROnPlateau(
optimizer,
"min",
patience=4,
min_lr=self.hparams["lr"] / 1000,
factor=0.5,
),
"interval": "epoch",
"frequency": 1,
"monitor": "val_loss",
"strict": True,
"name": None,
}
return {
"optimizer": optimizer,
"lr_scheduler": lr_scheduler_config,
}
# defining train dataset
train_dataset = aedataset(
datafile="train.csv", modality="T2_unbiased_linear", transforms=transforms_monai,
)
# defining train dataloader
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, pin_memory=True, num_workers=12, shuffle=True,
)
# defining validation dataset
val_dataset = aedataset(
datafile="validation.csv",
modality="T2_unbiased_linear",
transforms=transforms_monai,
)
# defining validation dataloader
val_dataloader = torch.utils.data.DataLoader(
val_dataset, batch_size=1, pin_memory=True, num_workers=12, shuffle=False
)
# directory name to save checkpoints and metrics
dir_name = "T2_128"
# initiaing the model
AE_model = engine_AE(0.0003019951720402019)
# learning rate monitor as using scheduler
lr_monitor = LearningRateMonitor(logging_interval="epoch")
# saving checkpoints monitoring validation loss
model_checkpoint = ModelCheckpoint(
dirpath=dir_name,
monitor="val_loss",
save_last=True,
filename="{epoch}-{train_loss:.6f}-{val_loss:.6f}",
save_top_k=5,
)
# Loggers
tb_logger = TensorBoardLogger(save_dir=dir_name + "/tb_logs")
csv_logger = CSVLogger(save_dir=dir_name + "/csv_logs")
pb = ProgressBar(refresh_rate=2)
# main training
if __name__ == "__main__":
trainer = pl.Trainer(
logger=[tb_logger, csv_logger],
# Change the number of GPUs here
gpus=[0, 1, 2, 3],
callbacks=[lr_monitor, model_checkpoint, pb],
sync_batchnorm=True,
log_every_n_steps=20,
accelerator="dp",
benchmark=True,
max_epochs=100,
)
trainer.fit(
AE_model, train_dataloaders=train_dataloader, val_dataloaders=val_dataloader
)