-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
132 lines (114 loc) · 4.04 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import openai
from openai import OpenAI
from transformers import AutoTokenizer
import torch
import transformers
from prompts import identity
import pdb
from pprint import pprint
def get_model(args):
model_name, temperature = args.model, args.temperature
if 'gpt' in model_name:
# # for azure api
# model = GPT(model_name, temperature)
# for direct openai api
model = GPT(args.api_key, model_name, temperature)
return model
elif 'llama' in model_name:
return LLaMA(model_name, temperature)
class Model(object):
def __init__(self):
self.post_process_fn = identity
def set_post_process_fn(self, post_process_fn):
self.post_process_fn = post_process_fn
class GPT(Model):
def __init__(self, model_name, temperature):
super().__init__()
self.model_name = model_name
self.temperature = temperature
self.badrequest_count = 0
# self.client = OpenAI(api_key=api_key)
def get_response(self, **kwargs):
try:
res = openai.chat.completions.create(**kwargs)
return res
except openai.APIConnectionError as e:
print('APIConnectionError')
time.sleep(30)
return self.get_response(**kwargs)
except openai.APIConnectionError as err:
print('APIConnectionError')
time.sleep(30)
return self.get_response(**kwargs)
except openai.RateLimitError as e:
print('RateLimitError')
time.sleep(10)
return self.get_response(**kwargs)
except openai.APITimeoutError as e:
print('APITimeoutError')
time.sleep(30)
return self.get_response(**kwargs)
except openai.BadRequestError as e:
print('BadRequestError')
self.badrequest_count += 1
print('badrequest_count', self.badrequest_count)
return None
def forward(self, head, prompts):
messages = [
{"role": "system", "content": head}
]
info = {}
for i, prompt in enumerate(prompts):
messages.append(
{"role": "user", "content": prompt}
)
response = self.get_response(
model=self.model_name,
messages=messages,
temperature=self.temperature,
)
if response is None:
info['response'] = None
info['message'] = None
return None, info
else:
messages.append(
{"role": "assistant", "content": response.choices[0].message.content}
)
info = dict(response.usage) # completion_tokens, prompt_tokens, total_tokens
info['response'] = messages[-1]["content"]
info['message'] = messages
# print("response: ", info['response'])
return self.post_process_fn(info['response']), info
class LLaMA(Model):
def __init__(self, model_name, temperature):
super().__init__()
self.model_name = model_name
self.temperature = temperature
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = "[PAD]"
tokenizer.padding_side = "left"
self.tokenizer = tokenizer
self.pipeline = transformers.pipeline(
"text-generation",
model=model_name,
torch_dtype=torch.float16,
device_map="auto",
tokenizer=tokenizer,
temperature=temperature
)
def forward(self, head, prompts):
prompt = prompts[0]
sequences = self.pipeline(
prompt,
do_sample=False,
top_k=1,
num_return_sequences=1,
eos_token_id=self.tokenizer.eos_token_id,
)
response = sequences[0]['generated_text'] # str
info = {
'message': prompt,
'response': response
}
return self.post_process_fn(info['response']), info