-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathhomework4_southwall.m
257 lines (205 loc) · 10 KB
/
homework4_southwall.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
% ----------------------------------------------------------------------- %
% __ __ __ _ __ __ %
% |\/| _ |_ | _ |_ |__| / |_ | \ _ (_ |__) |_ %
% | | (_| |_ | (_| |_) | \__ | |__/ (_) | | \ | %
% %
% ----------------------------------------------------------------------- %
% %
% Author: Alberto Cuoci <[email protected]> %
% CRECK Modeling Group <http://creckmodeling.chem.polimi.it> %
% Department of Chemistry, Materials and Chemical Engineering %
% Politecnico di Milano %
% P.zza Leonardo da Vinci 32, 20133 Milano %
% %
% ----------------------------------------------------------------------- %
% %
% This file is part of Matlab4CFDofRF framework. %
% %
% License %
% %
% Copyright(C) 2020 Alberto Cuoci %
% Matlab4CFDofRF is free software: you can redistribute it and/or %
% modify it under the terms of the GNU General Public License as %
% published by the Free Software Foundation, either version 3 of the %
% License, or (at your option) any later version. %
% %
% Matlab4CFDofRF is distributed in the hope that it will be useful, %
% but WITHOUT ANY WARRANTY; without even the implied warranty of %
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %
% GNU General Public License for more details. %
% %
% You should have received a copy of the GNU General Public License %
% along with Matlab4CRE. If not, see <http://www.gnu.org/licenses/>. %
% %
% ----------------------------------------------------------------------- %
close all;
clear variables;
%% Input data
%--------------------------------------------------------------------------
% Basic setup
nx=25; % number of grid points along x
ny=nx; % number of grid points along y
Lx=1; % length along x [m]
Ly=Lx; % length along y [m]
Uwnorth=0.1; % north wall velocity [m/s]
Uwsouth=0.1; % south wall velocity [m/s]
nu=1e-3; % kinematic viscosity [m2/s]
ttot=100; % total time of simulation [s]
% Parameters for SOR
max_iterations=10000; % maximum number of iterations
beta=1.5; % SOR coefficient
max_error=0.0001; % error for convergence
%% Pre-processing operations
%--------------------------------------------------------------------------
V=max(abs(Uwnorth),abs(Uwsouth)); % reference velocity [m/s]
L=max(Lx,Ly); % reference length [m]
Re=V*L/nu; % Reynolds' number [-]
tref=L/V; % reference time [s]
lengthx=Lx/L; % dimensionless length along x [-]
lengthy=Ly/L; % dimensionless length along y [-]
tautot=ttot/tref; % total time of simulation (dimensionless) [-]
uwnorth = Uwnorth/V; % dimensionless north wall velocity [-]
uwsouth = Uwsouth/V; % dimensionless south wall velocity [-]
% Grid step
hx=lengthx/(nx-1); % grid step along x [-]
hy=lengthy/(ny-1); % grid step along y [-]
% Time step
sigma = 0.5; % safety factor for time step (stability)
dtau_diff=min(hx,hy)^2*Re/4; % time step (diffusion stability) [-]
dtau_conv=4/Re; % time step (convection stability) [-]
dtau=sigma*min(dtau_diff, dtau_conv); % time step (stability) [-]
nsteps=tautot/dtau; % number of steps
fprintf('Time step: %f\n', dtau);
fprintf(' - Diffusion: %f\n', dtau_diff);
fprintf(' - Convection: %f\n', dtau_conv);
% Memory allocation
psi=zeros(nx,ny); % streamline function [-]
omega=zeros(nx,ny); % vorticity [-]
u=zeros(nx,ny); % reconstructed dimensionless x-velocity [-]
v=zeros(nx,ny); % reconstructed dimensionless y-velocity [-]
% Mesh construction (only needed in graphical post-processing)
x=0:hx:lengthx; % grid coordinates (x axis) [-]
y=0:hy:lengthy; % grid coordinates (y axis) [-]
[X,Y] = meshgrid(x,y); % mesh
%% Numerical solution
%--------------------------------------------------------------------------
tau = 0;
for istep=1:nsteps
% ------------------------------------------------------------------- %
% Poisson equation (SOR)
% ------------------------------------------------------------------- %
[psi,iter] = Poisson2D( psi,nx,ny,hx,hy,-omega, ...
beta,max_iterations,max_error );
% ------------------------------------------------------------------- %
% Reconstruction of dimensionless velocity field
% ------------------------------------------------------------------- %
[u,v] = ReconstructDimensionlessVelocity(u,v,psi,nx,ny,hx,hy,uwnorth,uwsouth);
% ------------------------------------------------------------------- %
% Find vorticity on boundaries
% ------------------------------------------------------------------- %
omega(:,1) = (psi(:,1)-psi(:,2))*2/hy^2 +2/hy*uwsouth; % south
omega(1,:) = (psi(1,:)-psi(2,:))*2/hx^2 ; % west
omega(nx,:) = (psi(nx,:)-psi(nx-1,:))*2/hx^2 ; % east
omega(:,ny) = (psi(:,ny)-psi(:,ny-1))*2/hy^2 -2/hy*uwnorth; % north
% ------------------------------------------------------------------- %
% Advection-diffusion equation (new vorticity in interior points)
% ------------------------------------------------------------------- %
[omega] = AdvectionDiffusion2D(omega, u,v, Re, nx,ny, hx,hy, dtau);
% ------------------------------------------------------------------- %
% Advancing time
% ------------------------------------------------------------------- %
if (mod(istep,25)==1)
fprintf('Step: %d - Time: %f - Iterations: %d\n', ...
istep, tau, iter);
end
tau=tau+dtau;
% ------------------------------------------------------------------- %
% On-the-fly graphical post-processing
% ------------------------------------------------------------------- %
if (mod(istep,25)==0)
contour(x,y,psi', 30, 'b');
axis('square');
pause(0.01);
end
end
%% Final post-processing operations
% ------------------------------------------------------------------- %
subplot(231);
surface(x,y,u');
axis('square'); title('u'); xlabel('x'); ylabel('y');
subplot(234);
surface(x,y,v');
axis('square'); title('v'); xlabel('x'); ylabel('y');
subplot(232);
surface(x,y,omega');
axis('square'); title('omega'); xlabel('x'); ylabel('y');
subplot(235);
surface(x,y,psi');
axis('square'); title('psi'); xlabel('x'); ylabel('y');
subplot(233);
contour(x,y,psi', 30, 'b');
axis('square');
title('stream lines'); xlabel('x'); ylabel('y');
subplot(236);
quiver(x,y,u',v');
axis([0 lengthx 0 lengthy], 'square');
title('stream lines'); xlabel('x'); ylabel('y');
%% ------------------------------------------------------------------------
% Poisson equation solver
% ------------------------------------------------------------------------
function [f,iter] = Poisson2D(f,nx,ny,hx,hy,S,beta,max_iterations,max_error)
B = (hx^2*hy^2)/2/(hx^2+hy^2);
Ae = B/hx^2; Aw = Ae;
An = B/hy^2; As = An;
for iter=1:max_iterations
for i=2:nx-1
for j=2:ny-1
f(i,j) = beta*( Ae*f(i+1,j) + Aw*f(i-1,j) + ...
An*f(i,j+1) + As*f(i,j-1) + ...
-B*S(i,j) ) + ...
(1-beta)*f(i,j);
end
end
res = 0;
for i=2:nx-1
for j=2:ny-1
res = res + abs( (f(i+1,j)-2*f(i,j)+f(i-1,j))/hx^2 + ...
(f(i,j+1)-2*f(i,j)+f(i,j-1))/hy^2 + ...
-S(i,j) ) ;
end
end
res = res/(nx-2)/(ny-2);
if (res <= max_error)
break;
end
end
end
%% ------------------------------------------------------------------------
% Reconstruction of velocity field (dimensionless)
% ------------------------------------------------------------------------
function [u,v] = ReconstructDimensionlessVelocity(u,v,psi,nx,ny,hx,hy,...
uwnorth, uwsouth)
u(:,ny) = uwnorth;
u(:,1) = uwsouth;
for i=2:nx-1
for j=2:ny-1
u(i,j) = ( psi(i,j+1)-psi(i,j-1) )/(2*hy);
v(i,j) = -( psi(i+1,j)-psi(i-1,j) )/(2*hx);
end
end
end
%% ------------------------------------------------------------------------
% Advection-diffusion equation: forward Euler + centered discretization
% ------------------------------------------------------------------------
function [f] = AdvectionDiffusion2D(f, u,v, Re, nx,ny, hx,hy, dtau)
fo = f;
for i=2:nx-1
for j=2:ny-1
A = u(i,j)*(fo(i+1,j)-fo(i-1,j))/(2*hx) + ...
v(i,j)*(fo(i,j+1)-fo(i,j-1))/(2*hy) ;
D = 1/Re * ( (fo(i+1,j)-2*fo(i,j)+fo(i-1,j))/hx^2 + ...
(fo(i,j+1)-2*fo(i,j)+fo(i,j-1))/hy^2 ) ;
f(i,j) = fo(i,j) + (-A + D)*dtau;
end
end
end