You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
i run successfully the transformers version, but i have difficulties with the diffusers version,
i changed the "assets/concept_list.json" according my data, but i got the next error
why?
KeyError: Parameter containing:
tensor([[ 0.0538, 0.0331, -0.0274, ..., -0.0369, -0.0265, -0.1301],
[-0.0218, -0.0355, 0.0451, ..., -0.0113, 0.1196, 0.0851],
[-0.0017, 0.0157, 0.0086, ..., 0.0153, 0.0031, -0.0807],
...,
[-0.0325, 0.0046, 0.0012, ..., -0.0154, -0.0103, -0.0002],
[ 0.0052, 0.0671, -0.0349, ..., -0.0433, 0.0659, -0.0225],
[ 0.0109, -0.0112, 0.0980, ..., 0.0068, 0.0108, -0.0460]],
device='cuda:1', requires_grad=True)
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /cortex/users/ohadr/projects/custom-diffusion/src/diffusers_training.py:1105 in │
│ │
│ 1102 │
│ 1103 if name == "main": │
│ 1104 │ args = parse_args() │
│ ❱ 1105 │ main(args) │
│ 1106 │
│ │
│ /cortex/users/ohadr/projects/custom-diffusion/src/diffusers_training.py:967 in main │
│ │
│ 964 │ │ │ │ encoder_hidden_states = text_encoder(batch["input_ids"])[0] │
│ 965 │ │ │ │ │
│ 966 │ │ │ │ # Predict the noise residual │
│ ❱ 967 │ │ │ │ model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sampl │
│ 968 │ │ │ │ │
│ 969 │ │ │ │ # Get the target for loss depending on the prediction type │
│ 970 │ │ │ │ if noise_scheduler.config.prediction_type == "epsilon": │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or _global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/deepspeed/utils/nvtx.py:15 in │
│ wrapped_fn │
│ │
│ 12 │ │
│ 13 │ def wrapped_fn(*args, **kwargs): │
│ 14 │ │ get_accelerator().range_push(func.qualname) │
│ ❱ 15 │ │ ret_val = func(*args, **kwargs) │
│ 16 │ │ get_accelerator().range_pop() │
│ 17 │ │ return ret_val │
│ 18 │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/deepspeed/runtime/engine.py:1769 │
│ in forward │
│ │
│ 1766 │ │ if self.fp16_auto_cast(): │
│ 1767 │ │ │ inputs = self._cast_inputs_half(inputs) │
│ 1768 │ │ │
│ ❱ 1769 │ │ loss = self.module(*inputs, **kwargs) │
│ 1770 │ │ │
│ 1771 │ │ if self.zero_optimization_partition_weights(): │
│ 1772 │ │ │ # Disable automated discovery of external parameters │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/transformers/models/clip/modeling │
│ clip.py:811 in forward │
│ │
│ 808 │ │ ```""" │
│ 809 │ │ return_dict = return_dict if return_dict is not None else self.config.use_return │
│ 810 │ │ │
│ ❱ 811 │ │ return self.text_model( │
│ 812 │ │ │ input_ids=input_ids, │
│ 813 │ │ │ attention_mask=attention_mask, │
│ 814 │ │ │ position_ids=position_ids, │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/transformers/models/clip/modeling │
│ clip.py:708 in forward │
│ │
│ 705 │ │ input_shape = input_ids.size() │
│ 706 │ │ input_ids = input_ids.view(-1, input_shape[-1]) │
│ 707 │ │ │
│ ❱ 708 │ │ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) │
│ 709 │ │ │
│ 710 │ │ bsz, seq_len = input_shape │
│ 711 │ │ # CLIP's text model uses causal mask, prepare it here. │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/transformers/models/clip/modeling │
│ clip.py:223 in forward │
│ │
│ 220 │ │ │ position_ids = self.position_ids[:, :seq_length] │
│ 221 │ │ │
│ 222 │ │ if inputs_embeds is None: │
│ ❱ 223 │ │ │ inputs_embeds = self.token_embedding(input_ids) │
│ 224 │ │ │
│ 225 │ │ position_embeddings = self.position_embedding(position_ids) │
│ 226 │ │ embeddings = inputs_embeds + position_embeddings │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self.backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/sparse.py:158 in │
│ forward │
│ │
│ 155 │ │ │ │ self.weight[self.padding_idx].fill(0) │
│ 156 │ │
│ 157 │ def forward(self, input: Tensor) -> Tensor: │
│ ❱ 158 │ │ return F.embedding( │
│ 159 │ │ │ input, self.weight, self.padding_idx, self.max_norm, │
│ 160 │ │ │ self.norm_type, self.scale_grad_by_freq, self.sparse) │
│ 161 │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/functional.py:2183 in │
│ embedding │
│ │
│ 2180 │ │ # torch.embedding_renorm │
│ 2181 │ │ # remove once script supports set_grad_enabled │
│ 2182 │ │ no_grad_embedding_renorm(weight, input, max_norm, norm_type) │
│ ❱ 2183 │ return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) │
│ 2184 │
│ 2185 │
│ 2186 def embedding_bag( │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
Steps: 0%| | 0/500 [00:01<?, ?it/s]
[23:00:13] ERROR failed (exitcode: 1) local_rank: 0 (pid: 1533480) of binary: /cortex/users/ohadr/envs/envs/ldm/bin/python
The text was updated successfully, but these errors were encountered:
Hi :)
i run successfully the transformers version, but i have difficulties with the diffusers version,
i changed the "assets/concept_list.json" according my data, but i got the next error
why?
KeyError: Parameter containing:
tensor([[ 0.0538, 0.0331, -0.0274, ..., -0.0369, -0.0265, -0.1301],
[-0.0218, -0.0355, 0.0451, ..., -0.0113, 0.1196, 0.0851],
[-0.0017, 0.0157, 0.0086, ..., 0.0153, 0.0031, -0.0807],
...,
[-0.0325, 0.0046, 0.0012, ..., -0.0154, -0.0103, -0.0002],
[ 0.0052, 0.0671, -0.0349, ..., -0.0433, 0.0659, -0.0225],
[ 0.0109, -0.0112, 0.0980, ..., 0.0068, 0.0108, -0.0460]],
device='cuda:1', requires_grad=True)
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /cortex/users/ohadr/projects/custom-diffusion/src/diffusers_training.py:1105 in │
│ │
│ 1102 │
│ 1103 if name == "main": │
│ 1104 │ args = parse_args() │
│ ❱ 1105 │ main(args) │
│ 1106 │
│ │
│ /cortex/users/ohadr/projects/custom-diffusion/src/diffusers_training.py:967 in main │
│ │
│ 964 │ │ │ │ encoder_hidden_states = text_encoder(batch["input_ids"])[0] │
│ 965 │ │ │ │ │
│ 966 │ │ │ │ # Predict the noise residual │
│ ❱ 967 │ │ │ │ model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sampl │
│ 968 │ │ │ │ │
│ 969 │ │ │ │ # Get the target for loss depending on the prediction type │
│ 970 │ │ │ │ if noise_scheduler.config.prediction_type == "epsilon": │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or _global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/deepspeed/utils/nvtx.py:15 in │
│ wrapped_fn │
│ │
│ 12 │ │
│ 13 │ def wrapped_fn(*args, **kwargs): │
│ 14 │ │ get_accelerator().range_push(func.qualname) │
│ ❱ 15 │ │ ret_val = func(*args, **kwargs) │
│ 16 │ │ get_accelerator().range_pop() │
│ 17 │ │ return ret_val │
│ 18 │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/deepspeed/runtime/engine.py:1769 │
│ in forward │
│ │
│ 1766 │ │ if self.fp16_auto_cast(): │
│ 1767 │ │ │ inputs = self._cast_inputs_half(inputs) │
│ 1768 │ │ │
│ ❱ 1769 │ │ loss = self.module(*inputs, **kwargs) │
│ 1770 │ │ │
│ 1771 │ │ if self.zero_optimization_partition_weights(): │
│ 1772 │ │ │ # Disable automated discovery of external parameters │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/transformers/models/clip/modeling │
│ clip.py:811 in forward │
│ │
│ 808 │ │ ```""" │
│ 809 │ │ return_dict = return_dict if return_dict is not None else self.config.use_return │
│ 810 │ │ │
│ ❱ 811 │ │ return self.text_model( │
│ 812 │ │ │ input_ids=input_ids, │
│ 813 │ │ │ attention_mask=attention_mask, │
│ 814 │ │ │ position_ids=position_ids, │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/transformers/models/clip/modeling │
│ clip.py:708 in forward │
│ │
│ 705 │ │ input_shape = input_ids.size() │
│ 706 │ │ input_ids = input_ids.view(-1, input_shape[-1]) │
│ 707 │ │ │
│ ❱ 708 │ │ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) │
│ 709 │ │ │
│ 710 │ │ bsz, seq_len = input_shape │
│ 711 │ │ # CLIP's text model uses causal mask, prepare it here. │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self._backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/transformers/models/clip/modeling │
│ clip.py:223 in forward │
│ │
│ 220 │ │ │ position_ids = self.position_ids[:, :seq_length] │
│ 221 │ │ │
│ 222 │ │ if inputs_embeds is None: │
│ ❱ 223 │ │ │ inputs_embeds = self.token_embedding(input_ids) │
│ 224 │ │ │
│ 225 │ │ position_embeddings = self.position_embedding(position_ids) │
│ 226 │ │ embeddings = inputs_embeds + position_embeddings │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/module.py:1110 in │
│ _call_impl │
│ │
│ 1107 │ │ # this function, and just call forward. │
│ 1108 │ │ if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks o │
│ 1109 │ │ │ │ or _global_forward_hooks or _global_forward_pre_hooks): │
│ ❱ 1110 │ │ │ return forward_call(*input, **kwargs) │
│ 1111 │ │ # Do not call functions when jit is used │
│ 1112 │ │ full_backward_hooks, non_full_backward_hooks = [], [] │
│ 1113 │ │ if self.backward_hooks or global_backward_hooks: │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/modules/sparse.py:158 in │
│ forward │
│ │
│ 155 │ │ │ │ self.weight[self.padding_idx].fill(0) │
│ 156 │ │
│ 157 │ def forward(self, input: Tensor) -> Tensor: │
│ ❱ 158 │ │ return F.embedding( │
│ 159 │ │ │ input, self.weight, self.padding_idx, self.max_norm, │
│ 160 │ │ │ self.norm_type, self.scale_grad_by_freq, self.sparse) │
│ 161 │
│ │
│ /cortex/users/ohadr/envs/envs/ldm/lib/python3.8/site-packages/torch/nn/functional.py:2183 in │
│ embedding │
│ │
│ 2180 │ │ # torch.embedding_renorm │
│ 2181 │ │ # remove once script supports set_grad_enabled │
│ 2182 │ │ no_grad_embedding_renorm(weight, input, max_norm, norm_type) │
│ ❱ 2183 │ return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse) │
│ 2184 │
│ 2185 │
│ 2186 def embedding_bag( │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
Steps: 0%| | 0/500 [00:01<?, ?it/s]
[23:00:13] ERROR failed (exitcode: 1) local_rank: 0 (pid: 1533480) of binary: /cortex/users/ohadr/envs/envs/ldm/bin/python
The text was updated successfully, but these errors were encountered: