-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathvariables.py
74 lines (62 loc) · 1.95 KB
/
variables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
Tools for manipulating sets of variables.
"""
import numpy as np
import tensorflow as tf
def interpolate_vars(old_vars, new_vars, epsilon):
"""
Interpolate between two sequences of variables.
"""
return add_vars(old_vars, scale_vars(subtract_vars(new_vars, old_vars), epsilon))
def average_vars(var_seqs):
"""
Average a sequence of variable sequences.
"""
res = []
for variables in zip(*var_seqs):
res.append(np.mean(variables, axis=0))
return res
def subtract_vars(var_seq_1, var_seq_2):
"""
Subtract one variable sequence from another.
"""
return [v1 - v2 for v1, v2 in zip(var_seq_1, var_seq_2)]
def add_vars(var_seq_1, var_seq_2):
"""
Add two variable sequences.
"""
return [v1 + v2 for v1, v2 in zip(var_seq_1, var_seq_2)]
def scale_vars(var_seq, scale):
"""
Scale a variable sequence.
"""
return [v * scale for v in var_seq]
def weight_decay(rate, variables=None):
"""
Create an Op that performs weight decay.
"""
if variables is None:
variables = tf.trainable_variables()
ops = [tf.assign(var, var * rate) for var in variables]
return tf.group(*ops)
class VariableState:
"""
Manage the state of a set of variables.
"""
def __init__(self, session, variables):
self._session = session
self._variables = variables
self._placeholders = [tf.placeholder(v.dtype.base_dtype, shape=v.get_shape())
for v in variables]
assigns = [tf.assign(v, p) for v, p in zip(self._variables, self._placeholders)]
self._assign_op = tf.group(*assigns)
def export_variables(self):
"""
Save the current variables.
"""
return self._session.run(self._variables)
def import_variables(self, values):
"""
Restore the variables.
"""
self._session.run(self._assign_op, feed_dict=dict(zip(self._placeholders, values)))