-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
154 lines (124 loc) · 4.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from fastapi import FastAPI, Request, UploadFile, Form, File
from fastapi.responses import StreamingResponse
from contextlib import asynccontextmanager
from starlette.middleware.cors import CORSMiddleware
from PIL import Image
from io import BytesIO
from diffusers import (
AutoPipelineForText2Image,
AutoPipelineForImage2Image,
AutoPipelineForInpainting,
)
from transformers import CLIPFeatureExtractor
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
@asynccontextmanager
async def lifespan(app: FastAPI):
feature_extractor = CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
)
text2img = AutoPipelineForText2Image.from_pretrained(
"stabilityai/sd-turbo",
safety_checker=safety_checker,
feature_extractor=feature_extractor,
).to("cpu")
img2img = AutoPipelineForImage2Image.from_pipe(text2img).to("cpu")
inpaint = AutoPipelineForInpainting.from_pipe(img2img).to("cpu")
yield {"text2img": text2img, "img2img": img2img, "inpaint": inpaint}
del inpaint
del img2img
del text2img
del safety_checker
del feature_extractor
app = FastAPI(lifespan=lifespan)
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
async def root():
return {"Hello": "World"}
@app.post("/text-to-image/")
async def text_to_image(
request: Request,
prompt: str = Form(...),
num_inference_steps: int = Form(1),
):
results = request.state.text2img(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=0.0,
)
if not results.nsfw_content_detected[0]:
image = results.images[0]
else:
image = Image.new("RGB", (512, 512), "black")
bytes = BytesIO()
image.save(bytes, "PNG")
bytes.seek(0)
return StreamingResponse(bytes, media_type="image/png")
@app.post("/image-to-image/")
async def image_to_image(
request: Request,
prompt: str = Form(...),
init_image: UploadFile = File(...),
num_inference_steps: int = Form(2),
strength: float = Form(1.0),
):
init_bytes = await init_image.read()
init_image = Image.open(BytesIO(init_bytes))
init_width, init_height = init_image.size
init_image = init_image.convert("RGB").resize((512, 512))
results = request.state.img2img(
prompt,
image=init_image,
num_inference_steps=num_inference_steps,
strength=strength,
guidance_scale=0.0,
)
if not results.nsfw_content_detected[0]:
image = results.images[0].resize((init_width, init_height))
else:
image = Image.new("RGB", (512, 512), "black")
bytes = BytesIO()
image.save(bytes, "PNG")
bytes.seek(0)
return StreamingResponse(bytes, media_type="image/png")
@app.post("/inpainting/")
async def inpainting(
request: Request,
prompt: str = Form(...),
init_image: UploadFile = File(...),
mask_image: UploadFile = File(...),
num_inference_steps: int = Form(2),
strength: float = Form(1.0),
):
init_bytes = await init_image.read()
init_image = Image.open(BytesIO(init_bytes))
init_width, init_height = init_image.size
init_image = init_image.convert("RGB").resize((512, 512))
mask_bytes = await mask_image.read()
mask_image = Image.open(BytesIO(mask_bytes))
mask_image = mask_image.convert("RGB").resize((512, 512))
results = request.state.inpaint(
prompt,
image=init_image,
mask_image=mask_image,
num_inference_steps=num_inference_steps,
strength=strength,
guidance_scale=0.0,
)
if not results.nsfw_content_detected[0]:
image = results.images[0].resize((init_width, init_height))
else:
image = Image.new("RGB", (512, 512), "black")
bytes = BytesIO()
image.save(bytes, "PNG")
bytes.seek(0)
return StreamingResponse(bytes, media_type="image/png")