forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlaunch-server.sh
228 lines (195 loc) · 7.29 KB
/
launch-server.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#!/bin/bash
# Currently FP8 benchmark is NOT enabled.
set -x
server_params=$1
common_params=$2
json2args() {
# transforms the JSON string to command line args, and '_' is replaced to '-'
# example:
# input: { "model": "meta-llama/Llama-2-7b-chat-hf", "tensor_parallel_size": 1 }
# output: --model meta-llama/Llama-2-7b-chat-hf --tensor-parallel-size 1
local json_string=$1
local args=$(
echo "$json_string" | jq -r '
to_entries |
map("--" + (.key | gsub("_"; "-")) + " " + (.value | tostring)) |
join(" ")
'
)
echo "$args"
}
launch_trt_server() {
model_path=$(echo "$common_params" | jq -r '.model')
model_name="${model_path#*/}"
model_type=$(echo "$server_params" | jq -r '.model_type')
model_dtype=$(echo "$server_params" | jq -r '.model_dtype')
model_tp_size=$(echo "$common_params" | jq -r '.tp')
max_batch_size=$(echo "$server_params" | jq -r '.max_batch_size')
max_input_len=$(echo "$server_params" | jq -r '.max_input_len')
max_seq_len=$(echo "$server_params" | jq -r '.max_seq_len')
max_num_tokens=$(echo "$server_params" | jq -r '.max_num_tokens')
trt_llm_version=$(echo "$server_params" | jq -r '.trt_llm_version')
# create model caching directory
cd ~
rm -rf models
mkdir -p models
cd models
models_dir=$(pwd)
trt_model_path=${models_dir}/${model_name}-trt-ckpt
trt_engine_path=${models_dir}/${model_name}-trt-engine
# clone tensorrt backend
cd /
rm -rf tensorrtllm_backend
git clone https://github.com/triton-inference-server/tensorrtllm_backend.git
git lfs install
cd tensorrtllm_backend
git checkout "$trt_llm_version"
git submodule update --init --recursive
# build trtllm engine
cd /tensorrtllm_backend
cd "./tensorrt_llm/examples/${model_type}"
python3 convert_checkpoint.py \
--model_dir "${model_path}" \
--dtype "${model_dtype}" \
--tp_size "${model_tp_size}" \
--output_dir "${trt_model_path}"
trtllm-build \
--checkpoint_dir "${trt_model_path}" \
--use_fused_mlp \
--reduce_fusion disable \
--workers 8 \
--gpt_attention_plugin "${model_dtype}" \
--gemm_plugin "${model_dtype}" \
--tp_size "${model_tp_size}" \
--max_batch_size "${max_batch_size}" \
--max_input_len "${max_input_len}" \
--max_seq_len "${max_seq_len}" \
--max_num_tokens "${max_num_tokens}" \
--output_dir "${trt_engine_path}"
# handle triton protobuf files and launch triton server
cd /tensorrtllm_backend
mkdir triton_model_repo
cp -r all_models/inflight_batcher_llm/* triton_model_repo/
cd triton_model_repo
rm -rf ./tensorrt_llm/1/*
cp -r "${trt_engine_path}"/* ./tensorrt_llm/1
python3 ../tools/fill_template.py -i tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,engine_dir:/tensorrtllm_backend/triton_model_repo/tensorrt_llm/1,decoupled_mode:true,batching_strategy:inflight_fused_batching,batch_scheduler_policy:guaranteed_no_evict,exclude_input_in_output:true,triton_max_batch_size:2048,max_queue_delay_microseconds:0,max_beam_width:1,max_queue_size:2048,enable_kv_cache_reuse:false
python3 ../tools/fill_template.py -i preprocessing/config.pbtxt "triton_max_batch_size:2048,tokenizer_dir:$model_path,preprocessing_instance_count:5"
python3 ../tools/fill_template.py -i postprocessing/config.pbtxt "triton_max_batch_size:2048,tokenizer_dir:$model_path,postprocessing_instance_count:5,skip_special_tokens:false"
python3 ../tools/fill_template.py -i ensemble/config.pbtxt triton_max_batch_size:"$max_batch_size"
python3 ../tools/fill_template.py -i tensorrt_llm_bls/config.pbtxt "triton_max_batch_size:$max_batch_size,decoupled_mode:true,accumulate_tokens:False,bls_instance_count:1"
cd /tensorrtllm_backend
python3 scripts/launch_triton_server.py \
--world_size="${model_tp_size}" \
--model_repo=/tensorrtllm_backend/triton_model_repo &
}
launch_tgi_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
--quantize fp8 \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="/tgi-entrypoint.sh \
--model-id $model \
--num-shard $tp \
--port $port \
$server_args"
fi
echo "Server command: $server_command"
eval "$server_command" &
}
launch_lmdeploy_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
server_command="lmdeploy serve api_server $model \
--tp $tp \
--server-port $port \
$server_args"
# run the server
echo "Server command: $server_command"
bash -c "$server_command" &
}
launch_sglang_server() {
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m sglang.launch_server \
--tp $tp \
--model-path $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m sglang.launch_server \
--tp $tp \
--model-path $model \
--port $port \
$server_args"
fi
# run the server
echo "Server command: $server_command"
eval "$server_command" &
}
launch_vllm_server() {
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
model=$(echo "$common_params" | jq -r '.model')
tp=$(echo "$common_params" | jq -r '.tp')
port=$(echo "$common_params" | jq -r '.port')
server_args=$(json2args "$server_params")
if echo "$common_params" | jq -e 'has("fp8")' >/dev/null; then
echo "Key 'fp8' exists in common params. Use neuralmagic fp8 model for convenience."
model=$(echo "$common_params" | jq -r '.neuralmagic_quantized_model')
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
else
echo "Key 'fp8' does not exist in common params."
server_command="python3 \
-m vllm.entrypoints.openai.api_server \
-tp $tp \
--model $model \
--port $port \
$server_args"
fi
# run the server
echo "Server command: $server_command"
eval "$server_command" &
}
main() {
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "trt" ]]; then
launch_trt_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "tgi" ]]; then
launch_tgi_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "lmdeploy" ]]; then
launch_lmdeploy_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == "sglang" ]]; then
launch_sglang_server
fi
if [[ "$CURRENT_LLM_SERVING_ENGINE" == *"vllm"* ]]; then
launch_vllm_server
fi
}
main