-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiffusion.py
235 lines (175 loc) · 7.65 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import torch
import torch.nn as nn
import torch.optim as optim
from torch_geometric.loader import DataLoader
from torch.utils.data import random_split
from torch_ema import ExponentialMovingAverage
import pandas as pd
import tqdm
import matplotlib.pyplot as plt
import os
import json
import random
import datetime
from src.utils.scaler import LatticeScaler
from src.utils.data import MP, OQMD, StructuresSampler
from src.utils.hparams import Hparams
from src.utils.metrics import compute_metrics
from src.model.gemsnet import GemsNetDiffusion
from src.utils.video import make_video
from src.utils.cif import make_cif
def get_dataloader(path: str, dataset: str, batch_size: int):
assert dataset in ["mp", "oqmd"]
dataset_path = os.path.join(path, dataset)
if dataset == "mp":
data = MP(dataset_path)
gen = torch.Generator().manual_seed(42)
train_set, valid_set, test_set = random_split(
data, [78600, 4367, 4367], generator=gen
)
elif dataset == "oqmd":
data = OQMD(dataset_path)
gen = torch.Generator().manual_seed(42)
train_set, valid_set, test_set = random_split(
data, [199686, 11094, 11094], generator=gen
)
loader_train = DataLoader(
train_set,
num_workers=4,
batch_sampler=StructuresSampler(train_set, max_atoms=batch_size, shuffle=True),
)
loader_valid = DataLoader(valid_set, batch_size=64, num_workers=4)
loader_test = DataLoader(test_set, batch_size=64, num_workers=4)
return loader_train, loader_valid, loader_test
def add_tensorboard(writer, metrics, path, batch_idx):
plt.scatter(metrics["t"], metrics["mae_pos_by_t"], label="gnn")
plt.scatter(metrics["t"], metrics["mae_pos_diff_by_t"], label="no action")
plt.legend()
writer.add_figure(f"{path}/mae_pos", plt.gcf(), batch_idx)
plt.close()
writer.add_scalar(f"{path}/mae_pos", metrics["mae_pos"].mean(), batch_idx)
writer.add_scalar(f"{path}/mae_lengths", metrics["mae_lengths"].mean(), batch_idx)
writer.add_scalar(f"{path}/mae_angles", metrics["mae_angles"].mean(), batch_idx)
writer.add_scalar(
f"{path}/loss", metrics["loss_pos"] + metrics["loss_lattice"], batch_idx
)
writer.add_scalar(f"{path}/loss_pos", metrics["loss_pos"], batch_idx)
writer.add_scalar(f"{path}/loss_lattice", metrics["loss_lattice"], batch_idx)
if __name__ == "__main__":
import argparse
from torch.utils.tensorboard import SummaryWriter
parser = argparse.ArgumentParser(description="train denoising model")
parser.add_argument("--hparams", "-H", default=None, help="json file")
parser.add_argument("--logs", "-l", default="./runs/diffusion")
parser.add_argument("--dataset", "-D", default="oqmd")
parser.add_argument("--dataset-path", "-dp", default="./data")
parser.add_argument("--device", "-d", default="cuda")
parser.add_argument("--threads", "-t", type=int, default=8)
args = parser.parse_args()
torch.set_num_threads(args.threads)
torch.set_num_interop_threads(args.threads)
# run name
tday = datetime.datetime.now()
run_name = tday.strftime(
f"training_%Y_%m_%d_%H_%M_%S_{args.dataset}_{random.randint(0,1000):<03d}"
)
print("run name:", run_name)
log_dir = os.path.join(args.logs, run_name)
os.makedirs(log_dir, exist_ok=True)
writer = SummaryWriter(log_dir=log_dir, flush_secs=3)
# basic setup
device = args.device
hparams = Hparams()
if args.hparams is not None:
hparams.from_json(args.hparams)
with open(os.path.join(log_dir, "hparams.json"), "w") as fp:
json.dump(hparams.dict(), fp, indent=4)
print("hparams:")
print(json.dumps(hparams.dict(), indent=4))
loader_train, loader_valid, loader_test = get_dataloader(
args.dataset_path, args.dataset, hparams.batch_size
)
scaler = LatticeScaler().to(device)
scaler.fit(loader_train)
model = GemsNetDiffusion(
lattice_scaler=scaler,
knn=hparams.knn,
num_blocks=hparams.layers,
x_betas=hparams.x_betas,
diffusion_steps=hparams.diffusion_steps,
).to(device)
opt = optim.Adam(model.parameters(), lr=hparams.lr, betas=(hparams.beta1, 0.999))
ema = ExponentialMovingAverage(model.parameters(), decay=0.995)
logs = {"batch": [], "loss": [], "loss_pos": [], "loss_lat": []}
best_val = float("inf")
batch_idx = 0
snapshot_idx = 0
for epoch in tqdm.tqdm(range(hparams.epochs), leave=True, position=0):
losses, losses_pos, losses_lat = [], [], []
it = tqdm.tqdm(loader_train, leave=False, position=1)
for batch in it:
batch = batch.to(device)
opt.zero_grad()
loss, loss_pos, loss_lat = model.get_loss(
batch.cell, batch.pos, batch.z, batch.num_atoms
)
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), hparams.grad_clipping)
opt.step()
ema.update()
losses.append(loss.item())
losses_pos.append(loss_pos.item())
losses_lat.append(loss_lat.item())
it.set_description(
f"loss: {loss.item():.3f} atomic pos={loss_pos.item():.3f} lattice={loss_lat.item():.3f}"
)
batch_idx += 1
losses = torch.tensor(losses).mean().item()
losses_pos = torch.tensor(losses_pos).mean().item()
losses_lat = torch.tensor(losses_lat).mean().item()
writer.add_scalar("train/loss", losses, batch_idx)
writer.add_scalar("train/loss_pos", losses_pos, batch_idx)
writer.add_scalar("train/loss_lattice", losses_lat, batch_idx)
logs["batch"].append(batch_idx)
logs["loss"].append(losses)
logs["loss_pos"].append(losses_pos)
logs["loss_lat"].append(losses_lat)
pd.DataFrame(logs).set_index("batch").to_csv(os.path.join(log_dir, "loss.csv"))
with ema.average_parameters():
metrics = compute_metrics(model, loader_valid, "validation", device)
add_tensorboard(writer, metrics, "valid", batch_idx)
total_loss = metrics["loss_pos"] + metrics["loss_lattice"]
if total_loss < best_val:
torch.save(model.state_dict(), os.path.join(log_dir, "best.pt"))
best_val = total_loss
for batch in loader_test:
batch = batch.to(device)
break
limit_batch_size = 16
batch.num_atoms = batch.num_atoms[:limit_batch_size]
batch.cell = batch.cell[:limit_batch_size]
max_atoms = batch.num_atoms.sum()
batch.pos = batch.pos[:max_atoms]
batch.z = batch.z[:max_atoms]
rho, x = model.sampling(batch.z, batch.num_atoms, return_history=True, verbose=True)
cif = make_cif((rho[0][-1], rho[1][-1]), x[-1], batch.z, batch.num_atoms)
with open(os.path.join(log_dir, "sampling.cif"), "w") as fp:
fp.write(cif)
# video_tensor = make_video(rho, x, batch.z, batch.num_atoms, step=32)
# writer.add_video("sampling", video_tensor)
metrics = compute_metrics(model, loader_test, "test", device)
add_tensorboard(writer, metrics, "test", batch_idx)
metrics = {
"loss": metrics["loss_pos"] + metrics["loss_lattice"],
"loss_pos": metrics["loss_pos"],
"loss_lattice": metrics["loss_lattice"],
"mae_pos": metrics["mae_pos"].mean().item(),
"mae_lengths": metrics["mae_lengths"].mean().item(),
"mae_angles": metrics["mae_angles"].mean().item(),
}
with open(os.path.join(log_dir, "metrics.json"), "w") as fp:
json.dump(metrics, fp, indent=4)
print("\nmetrics:")
print(json.dumps(metrics, indent=4))
writer.add_hparams(hparams.dict(), metrics)
writer.close()