forked from dionhaefner/pyhpc-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
170 lines (130 loc) · 4.61 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3
import os
import re
from collections import defaultdict
import click
import matplotlib
matplotlib.use('Agg')
# stupid regex matching ahead
RE_RESULT = re.compile(r''.join([
r'\s*',
r'(?P<size>(?:\d|,)+)\s*',
r'(?P<backend>\w+)\s*',
*(
rf'(?P<{name}>(?:\d|\.|,)+)\s*' for name in
('calls', 'mean', 'stdev', 'min', 'p25', 'median', 'p75', 'max', 'delta')
),
]))
RE_BENCHMARK = re.compile(r'benchmarks\.(?P<name>\w+)')
RE_PLATFORM = re.compile(r'Running on (?P<platform>\w+)')
BACKEND_COLORS = {
'numpy': 'C0',
'bohrium': 'C1',
'cupy': 'C2',
'jax': 'C3',
'numba': 'C4',
'pytorch': 'C5',
'tensorflow': 'C6',
'theano': 'C7',
}
def plot_results(records, benchmark, platform, outfile, plot_delta=False):
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1, figsize=(5.5, 4), dpi=75)
this_record = records[(benchmark, platform)]
last_coords = {}
for backend, backend_values in this_record.items():
x = backend_values['size']
if plot_delta:
y = backend_values['delta']
ylabel = 'Relative speedup'
else:
y = backend_values['mean']
ylabel = 'Mean runtime (s)'
x, y = zip(*sorted(zip(x, y), key=lambda ix: ix[0]))
plt.plot(
x, y, 'o--', label=backend,
color=BACKEND_COLORS[backend]
)
last_coords[backend] = (x[-1], y[-1])
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.xlabel('Problem size (# elements)')
plt.ylabel(ylabel)
plt.xscale('log')
plt.yscale('log')
plt.title(f'Benchmark "{benchmark}" on {platform.upper()}')
fig.canvas.draw()
# add annotations, make sure they don't overlap
last_text_pos = 0
for backend, (x, y) in sorted(last_coords.items(), key=lambda k: k[1][1]):
trans = ax.transData
_, tp = trans.transform((0, y))
tp = max(tp, last_text_pos + 15)
_, y = trans.inverted().transform((0, tp))
plt.annotate(
backend, (x, y), xytext=(10, 0), textcoords='offset points',
annotation_clip=False, color=BACKEND_COLORS[backend], va='center'
)
last_text_pos = tp
fig.tight_layout()
fig.savefig(outfile)
plt.close(fig)
def _parse_int(string):
return int(string.replace(',', '_'))
@click.command('plot')
@click.argument('INFILE', type=click.File('r'))
@click.option(
'-o', '--outdir', required=True, type=click.Path(file_okay=False, writable=True),
help='Output directory for plots'
)
@click.option(
'--plot-delta', is_flag=True,
help='Plot relative speedup instead of absolute runtime'
)
def main(infile, outdir, plot_delta):
"""Read a benchmark report from file or stdin and plot the results
Example:
$ python run.py benchmarks/equation_of_state > bench.txt
$ python plot.py bench.txt -o plots
"""
records = {}
for line in infile:
bench_match = RE_BENCHMARK.match(line)
if bench_match:
current_benchmark = bench_match.group('name')
continue
platform_match = RE_PLATFORM.match(line)
if platform_match:
current_platform = platform_match.group('platform')
continue
result_match = RE_RESULT.match(line)
if not result_match:
continue
result_line = result_match.groupdict()
backend = result_line['backend']
key = (current_benchmark, current_platform)
if key not in records:
records[key] = {}
if backend not in records[key]:
records[key][backend] = defaultdict(list)
record = records[key][backend]
if _parse_int(result_line['size']) in record['size']:
click.echo(
f'Warning: duplicate entry for benchmark {current_benchmark} '
f'on {current_platform}, backend {backend}, size {result_line["size"]} '
'- skipping'
)
continue
for rkey, rval in result_line.items():
if rkey in ('calls', 'size'):
rval = _parse_int(rval)
elif rkey in ('mean', 'stdev', 'min', 'p25', 'median', 'p75', 'max', 'delta'):
rval = float(rval)
record[rkey].append(rval)
os.makedirs(outdir, exist_ok=True)
for benchmark, platform in records.keys():
outfile = os.path.join(outdir, f'bench-{benchmark}-{platform}.png')
plot_results(records, benchmark, platform, outfile, plot_delta)
click.echo(f'Wrote {outfile}')
if __name__ == '__main__':
main()