-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
119 lines (96 loc) · 3.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
""" Utilities """
import os
import logging
import shutil
import torch
import torchvision.datasets as dset
import numpy as np
import preproc
def get_data(dataset, data_path, cutout_length, validation):
""" Get torchvision dataset """
dataset = dataset.lower()
if dataset == 'cifar10':
dset_cls = dset.CIFAR10
n_classes = 10
elif dataset == 'mnist':
dset_cls = dset.MNIST
n_classes = 10
elif dataset == 'fashionmnist':
dset_cls = dset.FashionMNIST
n_classes = 10
else:
raise ValueError(dataset)
trn_transform, val_transform = preproc.data_transforms(dataset, cutout_length)
trn_data = dset_cls(root=data_path, train=True, download=True, transform=trn_transform)
# assuming shape is NHW or NHWC
shape = trn_data.data.shape # zouxing: torchvision >= 1.2 train_data -> data
input_channels = 3 if len(shape) == 4 else 1
assert shape[1] == shape[2], "not expected shape = {}".format(shape)
input_size = shape[1]
ret = [input_size, input_channels, n_classes, trn_data]
if validation: # append validation data
ret.append(dset_cls(root=data_path, train=False, download=True, transform=val_transform))
return ret
def get_logger(file_path):
""" Make python logger """
# [!] Since tensorboardX use default logger (e.g. logging.info()), we should use custom logger
logger = logging.getLogger('darts')
log_format = '%(asctime)s | %(message)s'
formatter = logging.Formatter(log_format, datefmt='%m/%d %I:%M:%S %p')
file_handler = logging.FileHandler(file_path)
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
logger.setLevel(logging.INFO)
return logger
def param_size(model):
""" Compute parameter size in MB """
n_params = sum(
np.prod(v.size()) for k, v in model.named_parameters() if not k.startswith('aux_head'))
return n_params / 1024. / 1024.
class AverageMeter():
""" Computes and stores the average and current value """
def __init__(self):
self.reset()
def reset(self):
""" Reset all statistics """
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
""" Update statistics """
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
# output: (bs, num_class) 是64行10列, target: (bs, 1), topk=(1,5)
def accuracy(output, target, topk=(1,)):
""" Computes the precision@k for the specified values of k """
maxk = max(topk) # 5
batch_size = target.size(0)
# maxk=5,表示dim=1按行取值
# output的值是精度,选top5是选这一行精度最大的五个对应的列,也就是属于哪一类
# pred是(bs,5) 值为类别号,0,1,...,9
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t() # 转置,pred:(5, bs)
# one-hot case
if target.ndimension() > 1:
target = target.max(1)[1]
# pred和target对应位置值相等返回1,不等返回0
# target原来是64行1列,值为类别;target.view(1, -1)把target拉成一行,expand_as(pred)又把target变成5行64列
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk: # k=1 和 k=5
correct_k = correct[:k].contiguous().view(-1).float().sum(0) # zouxing: view -> .contiguous().view
res.append(correct_k.mul_(1.0 / batch_size))
# res里是两个值,一个是top1的概率,一个是top5的概率
return res
def save_checkpoint(state, ckpt_dir, is_best=False):
filename = os.path.join(ckpt_dir, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(ckpt_dir, 'best.pth.tar')
shutil.copyfile(filename, best_filename)