-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
150 lines (116 loc) · 5.62 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import datetime
import argparse
import numpy as np
import pandas as pd
import cv2
from keras.models import Sequential
from keras.layers import Convolution2D, ELU, Lambda, Dropout, Flatten, Dense
from keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from preprocess import preprocess_train, preprocess_test
def load_data(data_folders):
dfs = []
for d in data_folders:
df = pd.read_csv(d + 'driving_log.csv')
df.center = d + df.center.str.strip()
df.left = d + df.left.str.strip()
df.right = d + df.right.str.strip()
dfs.append(df.copy())
return pd.concat(dfs, ignore_index=True)
def shift_steering(df, shift_value=0.25):
center = df[['center', 'steering']].rename(columns={'center': 'image_path'})
left = df[['left', 'steering']].rename(columns={'left': 'image_path'})
right = df[['right', 'steering']].rename(columns={'right': 'image_path'})
left['steering'] = np.minimum(left['steering'] + shift_value, 1.)
right['steering'] = np.maximum(right['steering'] - shift_value, -1.)
return pd.concat((center, left, right), ignore_index=True)
def generate(df, preprocess_f, batch_size=128):
X, y = [], []
while 1:
df = shuffle(df)
for idx, row in df.iterrows():
image = cv2.imread(row['image_path'])
image, steering = preprocess_f(image, row['steering'])
image = image[None, :, :, :]
X.append(image)
y.append([steering])
if len(X) >= batch_size:
yield np.vstack(X), np.array(y)
X, y = [], []
def get_model(im_shape=(66, 200, 3)):
"""
Implementation of the nvidia model specified here:
http://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf
Concepts from the following model were also implemented:
https://github.com/commaai/research/blob/master/train_steering_model.py
"""
model = Sequential()
model.add(Lambda(lambda x: x/127.5 - 1., input_shape=im_shape, output_shape=im_shape))
model.add(Convolution2D(25, 5, 5, subsample=(2, 2), border_mode='valid', init='glorot_uniform'))
model.add(ELU())
model.add(Dropout(0.2))
model.add(Convolution2D(36, 5, 5, subsample=(2, 2), border_mode='valid', init='glorot_uniform'))
model.add(ELU())
model.add(Dropout(0.2))
model.add(Convolution2D(48, 5, 5, subsample=(2, 2), border_mode='valid', init='glorot_uniform'))
model.add(ELU())
model.add(Dropout(0.2))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode='valid', init='glorot_uniform'))
model.add(ELU())
model.add(Dropout(0.2))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode='valid', init='glorot_uniform'))
model.add(Flatten())
model.add(ELU())
model.add(Dropout(0.2))
model.add(Dense(100))
model.add(ELU())
model.add(Dropout(0.2))
model.add(Dense(50))
model.add(ELU())
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(ELU())
model.add(Dense(1))
model.compile(optimizer="adam", loss="mse")
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Steering angle model')
parser.add_argument('--data', nargs='+', default=['./data/sim_data/'],
help='Directories from which to load driving data')
parser.add_argument('--epochs', type=int, default=50, help='Number of epochs.')
parser.add_argument('--valid-split', type=float, default=0.25, help='Portion of total dataset to split for validation set')
parser.add_argument('--train-size', type=int, default=25600, help='Number of training samples per epoch.')
parser.add_argument('--valid-size', type=int, default=6400, help='Number of validation samples per epoch.')
parser.add_argument('--load-h5', default=None, help='Weights to load')
args = parser.parse_args()
df = load_data(args.data)
df = shift_steering(df)
df_train, df_valid = train_test_split(df, test_size=args.valid_split)
print('{} training examples'.format(df_train.shape[0]))
print('{} validation examples'.format(df_valid.shape[0]))
model = get_model()
model_name = 'model_' + datetime.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')
print('Model name: ' + model_name)
# load previous weights if specified
if args.load_h5:
model.load_weights(args.load_h5, by_name=True)
# callbacks
stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='min')
checkpoint = ModelCheckpoint(filepath='checkpoints/' + model_name + '_epoch-{epoch:02d}_val_loss-{val_loss:.4f}.h5',
monitor='val_loss', verbose=1, save_best_only=True, mode='min', save_weights_only=False)
# generators
train_gen = generate(df_train, preprocess_f=preprocess_train)
valid_gen = generate(df_valid, preprocess_f=preprocess_test)
# model training and evaluation against validation set
model.fit_generator(train_gen,
samples_per_epoch=args.train_size,
nb_epoch=args.epochs,
validation_data=valid_gen,
nb_val_samples=args.valid_size,
callbacks=[stop, checkpoint])
# saving model
print('Saving weights and model')
with open('./saved/{}.json'.format(model_name), 'w') as f:
f.write(model.to_json())
model.save_weights('./saved/{}.h5'.format(model_name), True)