-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassic_benchmark_functions.py
283 lines (222 loc) · 7.04 KB
/
classic_benchmark_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import math
from iEACOP.bEACOP import bEACOP
from iEACOP.iEACOP import iEACOP
def Mishra01(individual):
D = len(individual)
x_n = D
accum = 0
for i in range(D - 1):
accum += individual[i]
x_n -= accum
return (1 + x_n) ** x_n
def Quintic(individual):
D = len(individual)
accum = 0
for i in range(D):
accum += math.fabs(
individual[i] ** 5 + 3 * individual[i] ** 4 + 4 * individual[i] ** 3 + 2 * individual[i] ** 2 - 10 *
individual[i] - 4)
return accum
def Michalewicz(individual):
D = len(individual)
M = 10
accum = 0
for i in range(D):
accum += math.sin(individual[i]) * (math.sin((i * individual[i] ** 2.) / math.pi)) ** (2. * M)
return -accum
def Schubert(individual):
D = len(individual)
totale = 1
for i in range(D):
accum = 0.0
for j in range(5):
accum += j * math.cos((j + 1) * individual[i] + j)
totale *= accum
return totale
def Alpine(individual):
D = len(individual)
accum = 0.0
for i in range(D):
accum += math.fabs(individual[i] * math.sin(individual[i]) + 0.1 * individual[i])
return accum
def Bohachevsky(individual):
D = len(individual)
accum = 0.0
for i in range(D - 1):
accum += (individual[i] ** 2 + 2 * individual[i + 1] ** 2 - 0.3 * math.cos(
3 * math.pi * individual[i]) - 0.4 * math.cos(4 * math.pi * individual[i + 1]) + 0.7)
return accum
def Ferretti(individual):
D = len(individual)
accum = 30.0
for i in range(D):
accum += math.fabs(individual[i])
return accum
def Plateau(individual):
D = len(individual)
accum = 30.0
for i in range(D):
accum += math.floor(individual[i])
return accum
def XinSheYang(individual):
D = len(individual)
numer = 0.0
denom = 0.0
expo = 0.0
for i in range(D):
numer += math.fabs(individual[i])
for i in range(D):
expo += math.sin(individual[i] ** 2.)
denom = math.exp(expo)
return numer / denom
def Vincent(individual):
D = len(individual)
accum = 0.0
for i in range(D):
accum += math.sin(10 * math.log(individual[i]))
return (1.0 / D) * accum
def Vincent2(individual):
D = len(individual)
accum = 0.0
for i in range(D):
accum += math.sin(10 * math.log(individual[i]))
return accum
def Griewank(individual):
accum = 1.0
n = len(individual)
sub1 = 0.0
for i in range(n):
sub1 = sub1 + math.pow(individual[i], 2) / 4000
sub2 = 1.0
for i in range(n):
sub2 = sub2 * math.cos(individual[i] / (1 + math.sqrt(i)))
accum = accum + sub1 - sub2
return accum
def Ackley(individual):
n = len(individual)
accum = 20.0 + math.e
sub1 = 0.0
for i in range(n):
sub1 = sub1 + math.pow(individual[i], 2)
sub1 = sub1 / n
accum = accum - 20.0 * math.exp(-0.2 * math.sqrt(sub1))
sub2 = 0.0
for i in range(n):
sub2 = sub2 + math.cos(2 * individual[i] * math.pi)
sub2 = sub2 / n
accum = accum - math.exp(sub2)
return accum
def Rastrigin(individual):
A = 10.0
n = len(individual)
accum = A * n
for c in range(n):
accum = accum + (individual[c] * individual[c] - A * math.cos(2 * individual[c] * math.pi))
return accum
def Schwefel(individual):
n = len(individual)
accum = 418.9829 * n
subacc = 0.0
for i in range(n):
subacc = subacc + individual[i] * math.sin(math.sqrt(math.fabs(individual[i])))
accum = accum - subacc
return accum
def Rosenbrock(individual):
accum = 0.0
n = len(individual)
for c in range(n - 1):
# accum += ( 100.0*pow(individual[c+1]-math.pow(individual[c],2), 2) math.pow(1.0-individual[c],2) + )
accum += 100.0 * (individual[c] ** 2 - individual[c + 1]) ** 2 + (individual[c] - 1) ** 2
return accum
def Nobile1(individual):
first = 0.0
n = len(individual)
for c in range(n):
first += 1.0 / (0.001 + math.exp(individual[c] - 10. ** (-n)))
innerloop = 0.0
for c in range(n):
innerloop += (individual[c] - 10. ** (-n)) ** 2.
second = 1.0 / (0.001 + math.sqrt(innerloop))
return math.sin(first) - second
def Nobile3(individual):
n = len(individual)
first = 0.0
for c in range(n):
first += 1.0 / (0.001 + math.exp(individual[c] - 10 ** (-c)))
innerloop = 0.0
for c in range(n):
innerloop += (individual[c] - 10 ** (-c)) ** 2
second = 1.0 / (0.001 + math.sqrt(innerloop))
return math.sin(first) - (second)
def Nobile2(individual):
accum = 0.0
n = len(individual)
for c in range(n):
accum += individual[c] ** ((1.0 * (c + 1)) / (2 * n))
return accum
def Alpine_shifted(individual):
K = 1e6
D = len(individual)
accum = 0.0
for i in range(D):
accum += math.fabs((individual[i] - K) * math.sin((individual[i] - K)) + 0.1 * (individual[i] - K))
return accum
def my_fitness(individual):
accum = 1.0
n = len(individual)
sub1 = 0.0
for i in range(n):
sub1 = sub1 + math.pow(individual[i], 2) / 4000
sub2 = 1.0
for i in range(n):
sub2 = sub2 * math.cos(individual[i] / (1 + math.sqrt(i)))
accum = accum + sub1 - sub2
return accum
if __name__ == '__main__':
K = 1e6
limits = {}
limits["Ackley"] = [-30, 30]
limits["Alpine"] = [-10, 10]
limits["Bohachevsky"] = [-15, 15]
limits["Griewank"] = [-600, 600]
limits["Quintic"] = [-10, 10]
limits["Plateau"] = [-5.12, 5.12]
limits["Rastrigin"] = [-5, 5]
limits["Rosenbrock"] = [-5, 10]
limits["Schwefel"] = [-500, 500]
limits["Schubert"] = [-10, 10]
limits["Vincent"] = [0.25, 10]
limits["Vincent2"] = [0.25, 10]
limits["XinSheYang"] = [-2 * math.pi, 2 * math.pi]
limits["Michalewicz"] = [0, math.pi]
limits["Mishra01"] = [0, 1]
limits["Nobile1"] = [1e-10, 10]
limits["Nobile2"] = [1e-10, 10]
limits["Nobile3"] = [1e-10, 10]
limits["my_fitness"] = [-600, 600]
function = "Quintic"
dimensioni = 100
boundaries = [limits[function]] * dimensioni
individuals = 30
fiteval = 10000 * dimensioni
beacop = bEACOP(boundaries, creation_method={'name': "uniform"}, verbose=False)
ieacop = iEACOP(boundaries, creation_method={'name': "uniform"}, verbose=False)
print("@" * 100)
print("* Testing bEACOP'")
solution = beacop.solve(fiteval,
n_individuals=individuals,
fitness_function=eval(function),
coeff=2 * individuals,
seed=42)
print("Best fitness is:", solution.calculated_fitness)
print()
print("@" * 100)
print("* Testing iEACOP'")
solution = ieacop.solve(fiteval,
n_individuals=individuals,
fitness_function=eval(function),
coeff=2 * individuals,
seed=42)
print("Best fitness is:", solution.calculated_fitness)
print()
print("@" * 100)