-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_image.py
85 lines (75 loc) · 2.03 KB
/
eval_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
'''
evaluate the accuracy of reconstructed iamages by CNNAutoencoder.
'''
import os
import torch
from torch.utils.data import DataLoader
from LatentPixel import (
get_pixel_pretrain_dataloader,
params2dict,
CNNAutoencoder,
RenderConfig,
TGraph
)
from tqdm import tqdm
params = {
'model_paths': ['none'],
'data_paths': ['storage/bookcorpus', 'storage/enwiki'],
'dpi': 80,
'font_size': 8,
'pixels_per_patch': 8,
'rgb': False,
'binary': True,
'font_file': 'PixeloidSans-mLxMm.ttf',
'patch_len': 5,
'max_seq_len': 2000,
'num_batch': 50
}
def get_dataloader(params: dict) -> DataLoader:
rconf = RenderConfig(
dpi=params['dpi'],
font_size=params['font_size'],
pixels_per_patch=params['pixels_per_patch'],
patch_len=params['patch_len'],
font_file=params['font_file'],
rgb=params['rgb'],
binary=params['binary'],
max_seq_length=params['max_seq_len']
)
return get_pixel_pretrain_dataloader(
paths=params['data_paths'],
batch_size=16,
num_workers=8,
seed=42,
mask_ratio=0.5,
mask_type='span',
render_config=rconf,
min_len=400,
max_len=900,
streaming=True,
rank=0,
world_size=1
)
def test(params: dict, model_path: str | os.PathLike) -> float:
print('Begin to load the dataset')
loader = iter(get_dataloader(params))
print('data loaded!')
model = CNNAutoencoder(model_path)
model.eval()
model.cuda()
num_correct = 0
num_total = 0
for i in tqdm(range(params['num_batch'])):
img: TGraph = next(loader)
img.set_device('cuda')
r = model.forward(img)
comp = r.value == img.value
num_correct += comp.sum()
num_total += comp.numel()
return num_correct / num_total
if __name__ == '__main__':
params = params2dict(params)
print(params)
for path in params['model_paths']:
acc = test(params, path)
print(f'Model: {path} \n Acc: {acc}')