-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbundle
133 lines (107 loc) · 5.09 KB
/
bundle
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding: utf-8 -*-
"""
Mycelium-Inspired Compiler Framework
This code provides a basic framework for a compiler inspired by mycelium networks,
swarm intelligence, and other bio-inspired concepts.
Author: j.mosij
License: MIT License
Sources:
- https://docs.python.org/3/library/networkx.html
- https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.swarm.html
- ... (Add any other relevant sources here)
"""
import networkx as nx
import random
from scipy.optimize import swarm
class CodeModule:
def __init__(self, name, function):
self.name = name
self.function = function
self.inputs = [] # List of modules this module receives input from
self.outputs = [] # List of modules this module sends output to
def run(self, data):
"""
Executes the module's function on the provided data.
May interact with other modules through messaging (optional).
"""
return self.function(data)
class ParserModule(CodeModule):
def __init__(self):
super().__init__("Parser", self.parse_code)
def parse_code(self, code_input):
# Implement parsing logic here (e.g., using a parser generator like ANTLR)
# This example uses a simplified placeholder
print(f"ParserModule: Parsing code: {code_input}")
return {"tokens": ["token1", "token2", "token3"]}
class OptimizerModule(CodeModule):
def __init__(self):
super().__init__("Optimizer", self.optimize_code)
def optimize_code(self, parsed_code):
# Implement optimization techniques (e.g., constant folding, dead code elimination)
# This example uses a simplified placeholder
print(f"OptimizerModule: Optimizing code: {parsed_code}")
# (Simplified swarm optimization example)
def fitness_function(parameters):
# Evaluate the fitness of the optimized code based on metrics like
# execution time, memory usage, or readability
# ...
return sum(parameters) # Example: Minimize the sum of parameters
bounds = [(0, 1)] * 5 # Example bounds
best_parameters, best_fitness = swarm(fitness_function, bounds, swarmsize=10, iters=100)
print(f"OptimizerModule: Best parameters: {best_parameters}")
return {"optimized_tokens": ["opt_token1", "opt_token2"]}
class GeneratorModule(CodeModule):
def __init__(self, target_language):
super().__init__("Generator", self.generate_code)
self.target_language = target_language
def generate_code(self, optimized_code):
# Generate code in the target language based on the optimized representation
# This example uses a simplified placeholder
print(f"GeneratorModule: Generating code for {self.target_language}")
generated_code = f"/* Generated Code in {self.target_language} */\n"
for token in optimized_code.get("optimized_tokens", []):
generated_code += f"{token} "
return generated_code
class CodeCompiler:
def __init__(self):
self.graph = nx.DiGraph() # Use a directed graph for better representation of data flow
self.modules = {}
def add_module(self, module):
self.graph.add_node(module.name)
self.modules[module.name] = module
def connect_modules(self, source_module, target_module):
self.graph.add_edge(source_module.name, target_module.name)
source_module.outputs.append(target_module)
target_module.inputs.append(source_module)
def compile(self, code_input, target_language):
# Instantiate modules
parser = ParserModule()
optimizer = OptimizerModule()
generator = GeneratorModule(target_language)
# Connect modules (example: pipeline with optional feedback loop)
self.add_module(parser)
self.add_module(optimizer)
self.add_module(generator)
self.connect_modules(parser, optimizer)
self.connect_modules(optimizer, generator)
# Optional: Add a feedback loop from generator to optimizer
# self.connect_modules(generator, optimizer)
# Run modules sequentially
parsed_code = parser.run(code_input)
optimized_code = optimizer.run(parsed_code)
generated_code = generator.run(optimized_code)
return generated_code
# Example Usage
user_code = "print('Hello, world!')"
target_language = "Python"
compiler = CodeCompiler()
generated_code = compiler.compile(user_code, target_language)
print(generated_code)
# Further Enhancements (to be implemented):
# 1. Implement basic messaging between modules (e.g., using queues or shared memory).
# 2. Explore different network topologies (e.g., ring, star, fully connected).
# 3. Implement more sophisticated optimization algorithms (e.g., genetic algorithms, simulated annealing).
# 4. Integrate cellular automata for initial code structure generation.
# 5. Integrate a language model for code generation and user intent understanding.
# 6. Implement a visualization system for the compiler network and optimization process.
# 7. Thoroughly test and evaluate the compiler's performance and code quality.