-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprototype
106 lines (85 loc) · 3.92 KB
/
prototype
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import networkx as nx
import random
from scipy.optimize import swarm
class CodeModule:
def __init__(self, name, function):
self.name = name
self.function = function
self.inputs = [] # List of modules this module receives input from
self.outputs = [] # List of modules this module sends output to
def run(self, data):
"""
Executes the module's function on the provided data.
May interact with other modules through messaging (optional).
"""
return self.function(data)
class ParserModule(CodeModule):
def __init__(self):
super().__init__("Parser", self.parse_code)
def parse_code(self, code_input):
# Implement parsing logic here (e.g., using a parser generator like ANTLR)
# This example uses a simplified placeholder
print(f"ParserModule: Parsing code: {code_input}")
return {"tokens": ["token1", "token2", "token3"]}
class OptimizerModule(CodeModule):
def __init__(self):
super().__init__("Optimizer", self.optimize_code)
def optimize_code(self, parsed_code):
# Implement optimization techniques (e.g., constant folding, dead code elimination)
# This example uses a simplified placeholder
print(f"OptimizerModule: Optimizing code: {parsed_code}")
# (Simplified swarm optimization example)
def fitness_function(parameters):
# Placeholder fitness function
return sum(parameters) # Example: Minimize the sum of parameters
bounds = [(0, 1)] * 5 # Example bounds
best_parameters, best_fitness = swarm(fitness_function, bounds, swarmsize=10, iters=100)
print(f"OptimizerModule: Best parameters: {best_parameters}")
return {"optimized_tokens": ["opt_token1", "opt_token2"]}
class GeneratorModule(CodeModule):
def __init__(self, target_language):
super().__init__("Generator", self.generate_code)
self.target_language = target_language
def generate_code(self, optimized_code):
# Generate code in the target language based on the optimized representation
# This example uses a simplified placeholder
print(f"GeneratorModule: Generating code for {self.target_language}")
generated_code = f"/* Generated Code in {self.target_language} */\n"
for token in optimized_code.get("optimized_tokens", []):
generated_code += f"{token} "
return generated_code
class CodeCompiler:
def __init__(self):
self.graph = nx.DiGraph() # Use a directed graph for better representation of data flow
self.modules = {}
def add_module(self, module):
self.graph.add_node(module.name)
self.modules[module.name] = module
def connect_modules(self, source_module, target_module):
self.graph.add_edge(source_module.name, target_module.name)
source_module.outputs.append(target_module)
target_module.inputs.append(source_module)
def compile(self, code_input, target_language):
# Instantiate modules
parser = ParserModule()
optimizer = OptimizerModule()
generator = GeneratorModule(target_language)
# Connect modules (example: pipeline with optional feedback loop)
self.add_module(parser)
self.add_module(optimizer)
self.add_module(generator)
self.connect_modules(parser, optimizer)
self.connect_modules(optimizer, generator)
# Optional: Add a feedback loop from generator to optimizer
# self.connect_modules(generator, optimizer)
# Run modules sequentially
parsed_code = parser.run(code_input)
optimized_code = optimizer.run(parsed_code)
generated_code = generator.run(optimized_code)
return generated_code
# Example Usage
user_code = "print('Hello, world!')"
target_language = "Python"
compiler = CodeCompiler()
generated_code = compiler.compile(user_code, target_language)
print(generated_code)