Skip to content

Latest commit

 

History

History
39 lines (29 loc) · 1018 Bytes

README.md

File metadata and controls

39 lines (29 loc) · 1018 Bytes

semantic layer bot

Setup

poetry install --with dev

To interact with real semantic layer

  • Replace semantic_manifest.yaml with real manifest
  • Remove the mocked dbt calls in agent.py file (_get_dbt_query_result() and _create_dbt_query())

Run indexing

poetry run python ingest.py

Use agent

from agent import graph

async for event in graph.astream_events({"messages": [("human", "how much was ordered in total in july")]}, version="v2", include_types=["chat_model", "tool"]):
    print(event['event'])
    print(event['data'])
    print("\n\n" + "-" * 80 + "\n\n")

TODO

  • Is retrieval even needed? If so:
    • Use a real vecstore (not a local one)
    • Use a real record manager (not an in mem one)
    • Do less naive retrieval (hybrid semantc + keyword search, include parent information in each chunk, etc)
  • Improve prompts, add few-shot examples
  • Make sure dbt api calls are correct

LangGraph docs

https://langchain-ai.github.io/langgraph/