-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclient.py
151 lines (128 loc) · 4.85 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import socket
import time
import utils
import pandas as pd
import Settings
import pickle
import hashlib
class Worker:
def __init__(self, server_host, server_port):
self.server_host = server_host
self.server_port = server_port
self.worker_id = -1
self.workers = []
self.status = "idle"
## ['idle', 'mapping', 'reducing']
self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
def send_status(self):
while True:
time.sleep(10)
message = f"{self.worker_id}, {self.status}"
self.connect.sendall(message.encode('utf8'))
'''def receive_task(self):
f = open("Client\\data.txt", "wb")
while True:
data = self.socket.recv(1024)
f.write(data)
if not data:
break
def receive_map_file(self):
f = open("mapper.py", "wb")
while True:
data = self.socket.recv(1024)
f.write(data)
if not data:
break
def receive_reduce_file(self):
f = open("reducer.py", "wb")
while True:
data = self.socket.recv(1024)
f.write(data)
if not data:
break'''
def receive_file(self,client_socket, file_name, file_size):
file_path = f"Client\\{file_name}"
with open(file_path, 'wb') as file:
remaining_size = file_size
while remaining_size > 0:
data = client_socket.recv(min(1024, remaining_size))
if not data:
break
file.write(data)
remaining_size -= len(data)
def receive_files(self,client_socket):
while True:
# Receive file information (header)
file_info = client_socket.recv(1024).decode('utf-8')
if not file_info:
break
print(file_info)
file_name, file_size = file_info.split(',')
file_size = int(file_size)
print(f"Receiving file: {file_name} ({file_size} bytes)")
# Receive the file content
self.receive_file(client_socket, file_name, file_size)
def receive_work_list(self,client_socket):
file_info = client_socket.recv(1024).decode('utf-8')
print(file_info)
worker_id,work_list_length = file_info.split(',')
self.worker_id = worker_id
print(f"Receiving work list: worker {self.worker_id} ({work_list_length} bytes)")
serialized_data = client_socket.recv(4096)
data_list = pickle.loads(serialized_data)
self.workers = data_list[:]
print(self.workers)
def start_client(self):
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# server_host = '192.168.1.68' # Server IP
server_host = Settings.ServerIP()
server_port = 12345 # Server Port
self.socket.connect((self.server_host, self.server_port))
self.receive_work_list(self.socket)
self.receive_files(self.socket)
self.receive_files(self.socket)
self.receive_files(self.socket)
self.map(2)
def run(self):
# 运行环境下用户代码
pass
def map(self, k):
map_log = utils.getLog("mapper.py", "tuples.txt")
tuples = utils.readTuple("tuples.txt")
df = utils.tuples_2_pd(tuples)
sorted_df = df.sort_values(by='Key')
file_path = "mapped-{}.csv".format(self.worker_id)
sorted_df.to_csv(file_path, index=False)
utils.deleteFile('tuples.txt')
self.shuffle(sorted_df, k)
def shuffle(self, df, k):
keys = df['Key'].unique().tolist()
buckets = {i: [] for i in range(k)}
for key in keys:
bucket_num = hash(key) % k
buckets[bucket_num].append(key)
for key in buckets.keys():
keys = buckets[key]
filtered_df = df[df['Key'].isin(keys)]
filtered_df.to_csv('mapped-{}-part-{}.csv'.format(self.worker_id, key), index=False)
def distribute(self, addr_dict, k):
i = self.worker_id
for j in range(k):
file = "mapped-i-part-{}.csv".format(j)
client = addr_dict[j]
utils.sendFile(client, file)
def reduce(self, addr_list):
utils.combine(addr_list)
reduce_log = utils.getLog("reducer.py", "tuples.txt")
tuples = utils.readTuple("tuples.txt")
df = utils.tuples_2_pd(tuples)
df.sort_values(by='Key')
df.to_csv("reduced-{}.csv".format(self.worker_id), index=False)
utils.deleteFile('tuples.txt')
utils.deleteFile('to_be_reduced.csv')
if __name__ == "__main__":
server_host = Settings.ServerIP()
server_port = 12345
worker = Worker(server_host,server_port)
worker.start_client()
print("hhh")