-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTimelimit01_behavioral.m
288 lines (199 loc) · 10.4 KB
/
Timelimit01_behavioral.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
%% Behavioral analysis based on MEEG data
%=========================================================================%
% AUTHOR: Bianca Trovo ([email protected])
% DATE: created on April/May 2019
% EXPERIMENT: Timelimit_2018
%{
SCOPE: compute the
OUTPUT:
FIXME: SEM for medians
%}
%=========================================================================%
%% START of the script
%% Housekeeping
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% clear workspace (if needed)
if input('clear all? (1/0) ... ')
clearvars; close all;
end
% set paths (if needed)
BT_setpath
% choose subj & go to the right folder
BT_getsubj
clear LevelAnalysis name numlines prompt subj_folders
%% More specific paths (maybe set this in the start script)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
behavioral_folder= [results_Path, '/Behaviour']; % it can be also current_subj_folder
if ~exist(fullfile(behavioral_folder)); mkdir(fullfile(behavioral_folder)); end;
timeseries_folder= [results_Path, '/Timeseries']; % it can be also current_subj_folder
if ~exist(fullfile(timeseries_folder)); mkdir(fullfile(timeseries_folder)); end;
cd(timeseries_folder);
powerspectra_folder= [results_Path, '/Powerspect']; % it can be also current_subj_folder
if ~exist(fullfile(powerspectra_folder)); mkdir(fullfile(powerspectra_folder)); end;
cd(powerspectra_folder);
regression_folder= [results_Path, '/Regressions']; % it can be also current_subj_folder
if ~exist(fullfile(regression_folder)); mkdir(fullfile(regression_folder)); end;
%% Load preprocessed files and exclude behavioural artifacts
for subjnum=1:nSubjs; %nSubjs
cd([data_Path, sprintf('/subj%02d', subjnum)]);
% current_subj_folder= fullfile(data_Path, subj_folders(subi).name);
% cd(current_subj_folder);
if subjnum== 1 || subjnum== 18 || subjnum== 19 || subjnum== 20 || subjnum== 21 || subjnum== 22
load(sprintf('TimeLimit_v2_Resp_subj%02d_EEG_clean_concat_rej_interp',subjnum))
else
load(sprintf('TimeLimit_2_subj%02d_EEG_clean_concat_rej_interp',subjnum))
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Setting up indexes for getting only the good trials
[idx_goodxcond,idx_goodtrls, idx_allbadtrls]= BTmy_cleandatamore(TRIALS);
good_trls = setdiff([1:length(DATA_REJ_INTERP.trial)],idx_allbadtrls);
if isequal(idx_goodtrls',good_trls)==1; disp('YES'); else disp('NO'); end;
% redundant but we redo it just in case
cond= [TRIALS.cond]; %we put all the conditions in a row
cond(cond==32) = Inf;
un_conds = unique(cond);
newcond= cond(good_trls);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Re-preprocessing data for further analyses
cfg=[];
cfg.trials = good_trls;
cfg.trials = find(newcond == un_conds(condi));
% cfg.latency = [-1 -.2];
DATA_CLEAN= ft_selectdata(cfg,DATA_REJ_INTERP);
resps= [TRIALS.rt];
clockstarts= [TRIALS.t0];
TRIALS_CLEAN= resps(good_trls);
CLOCKST= clockstarts(good_trls);
if isequal(length(DATA_CLEAN.trial), length(TRIALS_CLEAN), length(CLOCKST)); disp(['CORRECT: M/EEG data of subj ' num2str(subjnum) ' matches size BEHAV data']); else disp(['INCORRECT:M/EEG data of subj ' num2str(subjnum) 'does not matche size BEHAV data']); end;
TIMEDIFF= [TRIALS_CLEAN- CLOCKST];
WAITTIMES= TIMEDIFF/500; %divided by sampling rate (500Hz)
RESPTIMES= WAITTIMES-3.0; % from Zafer's code, we know for sure it's 3 sec exaclty.
% Sorted
good_resps_cond={};
for condi = 1:length(uconds)
good_resps_cond{condi}= RESPTIMES(find(newcond == un_conds(condi))); % BEFORE removing outliers
end
behavioral_folder= [results_Path, '/Behaviour']; % it can be also current_subj_folder
if ~exist(fullfile(behavioral_folder)); mkdir(fullfile(behavioral_folder)); end;
cd(behavioral_folder);
filename= [sprintf('subj%02d_WaitingTimes', subjnum)]; % add one if all trials mixed by condition
save(filename,'RESPTIMES','good_resps_cond');
disp(['End of subj ' num2str(subjnum)]);
end
%% Load/group behavioral data, compute log and normalize resp times
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load in an unique structure
for subi=1:nSubjs
%
% cd(behavioral_folder2);
fname_BehavData= sprintf('subj%02d_WaitingTimes',subi);
pickupBehav(subi) = load(fname_BehavData);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for subi=1:nSubjs;
pickupBehav(subi).LogRESPS = log(pickupBehav(subi).RESPTIMES);
for condi= 1:5
pickupBehav(subi).LogByConds{condi} = log(pickupBehav(subi).good_resps_cond{condi});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% normalization with method 'z-score'
for subi=1:nSubjs;
pickupBehav(subi).normRESPS = normalize(pickupBehav(subi).RESPTIMES);
for condi= 1:5
pickupBehav(subi).normRESPCond{condi} = normalize(pickupBehav(subi).good_resps_cond{condi});
end
end
save pickupBehav pickupBehav;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% just to see
ALL_BEHAV= [pickupBehav(subi).RESPTIMES' pickupBehav(subi).LogRESPS'];
%[pickupBehav(subi).good_resps_cond{1}' pickupBehav(subi).good_resps_cond{2}' pickupBehav(subi).good_resps_cond{3}' pickupBehav(subi).good_resps_cond{4}' pickupBehav(subi).good_resps_cond{5}']
%% Descriptive stats
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
behavStats= struct('mWT',[],'mdWT', [],'stdWT',[], 'semWT',[], 'minWT',[], 'maxWT',[]);
for subi= 1: nSubjs
for condi= 1:5
.
behavStats.mWT(subi,condi)= nanmean(pickupBehav(subi).good_resps_cond{condi}); % mean
behavStats.mdWT(subi,condi)= nanmedian(pickupBehav(subi).good_resps_cond{condi}); % median
behavStats.stdWT(subi,condi)= nanstd(pickupBehav(subi).good_resps_cond{condi}); % standard deviation
behavStats.semWT(subi,condi)= sem(pickupBehav(subi).good_resps_cond{condi}); % Standard Error of the Mean
behavStats.minWT(subi,condi)= nanmin(pickupBehav(subi).good_resps_cond{condi}); % minimum
behavStats.maxWT(subi,condi)= nanmax(pickupBehav(subi).good_resps_cond{condi}); % maximum
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% interquartile range for median values
for condi= 1:5
%
pd(condi) = fitdist(behavStats.mdWT(:,condi),'Normal'); % probability distribution
r(condi) = iqr(pd(condi)); %interquartile range values (in matlab outputs appear as 'r'
y(condi,:) = icdf(pd(condi),[0.25,0.75]); % Inverse cumulative distribution function
end
IQR= y; % saved independently in DescriptiveStats
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% max avg response
for condi=1:5; maxWaits(condi)= max(behavStats.mdWT(:,condi)); semMaxWaits(condi)= sem(behavStats.mdWT(:,condi)); end;
figure; bar(maxWaits);
% min avg response
for condi=1:5; minWaits(condi)= min(behavStats.mdWT(:,condi)); end;
figure; bar(minWaits);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% in log scale
LogBehavStats= struct('mWT',[],'mdWT', [],'stdWT',[], 'semWT',[], 'minWT',[], 'maxWT',[]);
for subi= 1: nSubjs
for condi= 1:5
LogBehavStats.mWT(subi,condi)= nanmean(pickupBehav(subi).LogByConds{condi});
LogBehavStats.mdWT(subi,condi)= nanmedian(pickupBehav(subi).LogByConds{condi});
LogBehavStats.stdWT(subi,condi)= nanstd(pickupBehav(subi).LogByConds{condi});
LogBehavStats.semWT(subi,condi)= sem(pickupBehav(subi).LogByConds{condi});
LogBehavStats.minWT(subi,condi)= nanmin(pickupBehav(subi).LogByConds{condi});
LogBehavStats.maxWT(subi,condi)= nanmax(pickupBehav(subi).LogByConds{condi});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% normalized (sanity check because mean=0 and std=1)
normStats= struct('mWT',[],'mdWT', [],'stdWT',[], 'semWT',[], 'minWT',[], 'maxWT',[]);
for subi= 1: nSubjs
for condi= 1:5
normStats.mWT(subi,condi)= nanmean(pickupBehav(subi).normRESPCond{condi});
normStats.mdWT(subi,condi)= nanmedian(pickupBehav(subi).normRESPCond{condi});
normStats.stdWT(subi,condi)= nanstd(pickupBehav(subi).normRESPCond{condi});
normStats.semWT(subi,condi)= sem(pickupBehav(subi).normRESPCond{condi});
normStats.minWT(subi,condi)= nanmin(pickupBehav(subi).normRESPCond{condi});
normStats.maxWT(subi,condi)= nanmax(pickupBehav(subi).normRESPCond{condi});
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Grandaverages
GAVGbehav= [];
for condi= 1:5
GAVGbehav.mWT(condi)= nanmean(behavStats.mWT(:,condi),1);
GAVGbehav.mdWT(condi)= nanmean(behavStats.mdWT(:,condi),1);
GAVGbehav.stdWT(condi)= nanmean(behavStats.stdWT(:,condi),1);
GAVGbehav.semWT(condi)= nanmean(behavStats.semWT(:,condi),1);
GAVGbehav.minWT(condi)= nanmean(behavStats.minWT(:,condi),1);
GAVGbehav.maxWT(condi)= nanmean(behavStats.maxWT(:,condi),1);
GAVGbehav.semMaxWT(condi)= sem(behavStats.maxWT(:,condi),1);
GAVGbehav.semMinWT(condi)= sem(behavStats.minWT(:,condi),1);
end
% Log scale
GAVGLogbehav= [];
for condi= 1:5
GAVGLogbehav.mWT(condi)= nanmean(LogBehavStats.mWT(:,condi),1);
GAVGLogbehav.mdWT(condi)= nanmean(LogBehavStats.mdWT(:,condi),1);
GAVGLogbehav.stdWT(condi)= nanmean(LogBehavStats.stdWT(:,condi),1);
GAVGLogbehav.semWT(condi)= nanmean(LogBehavStats.semWT(:,condi),1);
GAVGLogbehav.minWT(condi)= nanmean(LogBehavStats.minWT(:,condi),1);
GAVGLogbehav.maxWT(condi)= nanmean(LogBehavStats.maxWT(:,condi),1);
end
% Save variables
save DescriptiveStats behavStats LogBehavStats GAVGbehav GAVGLogbehav IQR;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% END of the script