-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator_trainer.py
346 lines (322 loc) · 15.8 KB
/
generator_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""
train model
Usage:
generator_trainer.py --path_cfg_exp=<path> [--path_data=<path>] [--path_model=<path>] [--path_output=<path>] [--version=<val>] [--generator_ckpt=<filename>]
generator_trainer.py -h | --help
Options:
-h --help show this screen help
--path_cfg_exp=<path> experiment config path
--path_data=<path> data path
--path_model=<path> model path
--path_output=<path> output path
--path_train_data=<path> train data path
--path_val_data=<path> validation data path
--path_test_data=<path> Test data path
--version=<val> version
--generator_ckpt=<filename> GENERATOR checkpoint file name
"""
from docopt import docopt
import os
import shutil
import time
from datetime import datetime
import numpy as np
import torch
from torch import Tensor as T
import logging
import random
from typing import Tuple
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from configs.generator_config.config import get_cfg_defaults
from generator.utils.model_utils import (
get_checkpoint_path, get_model_components,
get_optimizer_components, setup_for_distributed_mode,
load_states_from_checkpoint, CheckpointState, get_model_obj,
set_model_cfg_from_state, get_model_params_state
)
from generator.utils.data_utils import GenDataset, GenCollator
from generator.options import setup_cfg_gpu, set_seed
from generator_utils import BLEUScorer, GENERATORValResult, format_generator_validation, save_combined_results, save_eval_metrics, delete
logging.basicConfig(
filename='generator_logs.log',
filemode='w',
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
logger = logging.getLogger(__name__)
class GENERATORTrainer:
def __init__(self, cfg, checkpoint_path=None):
self.cfg = cfg
self.shard_id = cfg.LOCAL_RANK if cfg.LOCAL_RANK != -1 else 0
self.distributed_factor = cfg.DISTRIBUTED_WORLD_SIZE or 1
saved_state = None
if checkpoint_path:
saved_state = load_states_from_checkpoint(checkpoint_path)
set_model_cfg_from_state(saved_state.model_params, cfg)
tokenizer, generator = get_model_components(cfg, checkpoint_path)
optimizer, scheduler = get_optimizer_components(cfg, generator)
generator, optimizer = setup_for_distributed_mode(generator, optimizer, cfg.DEVICE, cfg.N_GPU,
cfg.LOCAL_RANK,
cfg.FP16,
cfg.FP16_OPT_LEVEL)
self.tokenizer = tokenizer
self.generator = generator
self.optimizer = optimizer
self.scheduler = scheduler
self.start_step = 0
self.scheduler_state = None
self.validations = []
self.saved_cps = {}
self.best_cp_name = None
self.train_dataset = None
self.val_dataset = None
self.collator = GenCollator(tokenizer, cfg.GENERATOR.MODEL.PROMPT_MAX_LENGTH, cfg.GENERATOR.MODEL.ANSWER_MAX_LENGTH)
self.eval_scorer = BLEUScorer()
if saved_state:
self._load_saved_state(saved_state)
def evaluate(self, eval_dataset: GenDataset):
logger.info('Evaluating generator ...')
self.generator.eval()
cfg = self.cfg
eval_sampler = SequentialSampler(eval_dataset)
eval_data_loader = DataLoader(
eval_dataset,
sampler=eval_sampler,
batch_size=cfg.GENERATOR.SOLVER.TEST_BATCH_SIZE,
drop_last=False,
num_workers=1,
collate_fn=self.collator
)
bleu_scores = []
result_data = []
with torch.no_grad():
for iteration, batch in enumerate(eval_data_loader):
model_outputs = self.generator.generate(
input_ids=batch.prompt_ids.to(cfg.DEVICE),
attention_mask=batch.prompt_masks.to(cfg.DEVICE),
max_length=cfg.GENERATOR.SOLVER.EVAL_ANSWER_MAX_LEN
)
for i, out_seq in enumerate(model_outputs):
pred_answer = self.tokenizer.decode(out_seq, skip_special_tokens=True)
data_example = eval_dataset.get_example(batch.indices[i])
gold_answers = data_example['answers']
score = self.eval_scorer.compute_bleu_score(gold_answers, pred_answer)
bleu_scores.append(score)
data_example['pred_answer'] = {'text': pred_answer, 'bleu': score}
result_data.append(data_example)
mean_bleu_score = np.mean(bleu_scores)
return mean_bleu_score, result_data
def _save_checkpoint(self, step: int) -> str:
cfg = self.cfg
model_to_save = get_model_obj(self.generator)
cp_dir = os.path.join(cfg.GENERATOR.MODEL.MODEL_PATH, cfg.GENERATOR.MODEL.CHECKPOINT_FILE_NAME + '.' + str(step))
os.makedirs(cp_dir, exist_ok=True)
model_to_save.save_pretrained(cp_dir)
cp_fp = os.path.join(cp_dir, "checkpoint.pth.tar")
meta_params = get_model_params_state(cfg)
state = CheckpointState(
meta_params,
self.optimizer.state_dict(),
self.scheduler.state_dict(),
step
)
torch.save(state._asdict(), cp_fp)
logger.info('Saved checkpoint at %s', cp_fp)
return cp_dir
def validate_and_save(self, cur_step: int, val_dataset: GenDataset):
cfg = self.cfg
# for distributed mode, save checkpoint for only one process
save_cp = cfg.LOCAL_RANK in [-1, 0]
cur_val_id = len(self.validations)
if cfg.GENERATOR.DATA.VAL_DATA_PATH:
mean_bleu_score, _ = self.evaluate(val_dataset)
val_metrics = ["bleu"]
metrics_score = [mean_bleu_score]
generator_eval = GENERATORValResult(cur_val_id, cur_step, val_metrics, metrics_score)
self.validations.append(generator_eval)
fmt_header, fmt_value = format_generator_validation(generator_eval)
logger.info(fmt_header)
logger.info(fmt_value)
if cur_val_id == 0:
print(fmt_header)
print(fmt_value)
if save_cp:
best_generator_eval = max(self.validations, key=lambda x: x.scores)
if len(self.saved_cps) < cfg.GENERATOR.SOLVER.CP_SAVE_LIMIT:
cp_path = self._save_checkpoint(cur_step)
self.saved_cps[cur_val_id] = cp_path
if best_generator_eval.val_id == cur_val_id:
self.best_cp_name = cp_path
logger.info('New Best validation checkpoint %s', cp_path)
else:
sorted_generator_evals = sorted(self.validations, key=lambda x: x.scores, reverse=True)
for generator_eval in sorted_generator_evals[cfg.GENERATOR.SOLVER.CP_SAVE_LIMIT:]:
if generator_eval.val_id in self.saved_cps:
delete(self.saved_cps[generator_eval.val_id])
del self.saved_cps[generator_eval.val_id]
cp_path = self._save_checkpoint(cur_step)
self.saved_cps[cur_val_id] = cp_path
if best_generator_eval.val_id == cur_val_id:
self.best_cp_name = cp_path
logger.info('New Best validation checkpoint %s', cp_path)
break
def train(self, train_dataset, val_dataset=None):
self.generator.train()
cfg = self.cfg
train_sampler = RandomSampler(train_dataset)
train_data_loader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=cfg.GENERATOR.SOLVER.TRAIN_BATCH_SIZE,
drop_last=True,
num_workers=1,
collate_fn=self.collator
)
logger.info("Total updates=%d", cfg.GENERATOR.SOLVER.TOTAL_TRAIN_STEPS)
logger.info(" Eval step = %d", cfg.GENERATOR.SOLVER.NUM_STEP_PER_EVAL)
logger.info("***** Training *****")
cur_step = self.start_step
rolling_loss = 0
epoch = 0
last_saved_step = -1
while cur_step < cfg.GENERATOR.SOLVER.TOTAL_TRAIN_STEPS:
epoch += 1
logger.info("***** Epoch %d *****", epoch)
for iteration, batch in enumerate(train_data_loader):
model_outputs = self.generator(
input_ids=batch.prompt_ids.to(cfg.DEVICE),
attention_mask=batch.prompt_masks.to(cfg.DEVICE),
labels=batch.target_ids.to(cfg.DEVICE)
)
cur_loss = model_outputs.loss
if self.cfg.GENERATOR.SOLVER.OPTIMIZER.GRADIENT_ACCUMULATION_STEPS > 1:
cur_loss = cur_loss / self.cfg.GENERATOR.SOLVER.OPTIMIZER.GRADIENT_ACCUMULATION_STEPS
rolling_loss += cur_loss.item()
cur_loss.backward()
if (iteration + 1) % self.cfg.GENERATOR.SOLVER.OPTIMIZER.GRADIENT_ACCUMULATION_STEPS == 0:
torch.nn.utils.clip_grad_norm_(self.generator.parameters(), cfg.GENERATOR.SOLVER.OPTIMIZER.MAX_GRAD_NORM)
self.optimizer.step()
self.scheduler.step()
self.generator.zero_grad()
cur_step += 1
if cur_step % cfg.GENERATOR.SOLVER.NUM_STEP_PER_EVAL == 0 and last_saved_step != cur_step:
logger.info(
"Rank=%d, step: %d/%d, avg train loss: %f, lr: %f",
cfg.LOCAL_RANK,
cur_step,
cfg.GENERATOR.SOLVER.TOTAL_TRAIN_STEPS,
rolling_loss/cfg.GENERATOR.SOLVER.NUM_STEP_PER_EVAL,
self.scheduler.get_last_lr()[0]
)
self.validate_and_save(cur_step, val_dataset)
self.generator.train()
rolling_loss = 0
last_saved_step = cur_step
if cur_step >= cfg.GENERATOR.SOLVER.TOTAL_TRAIN_STEPS:
break
logger.info(
"Rank=%d, step: %d/%d, avg train loss: %f, lr: %f",
cfg.LOCAL_RANK,
cur_step,
cfg.GENERATOR.SOLVER.TOTAL_TRAIN_STEPS,
rolling_loss / cfg.GENERATOR.SOLVER.NUM_STEP_PER_EVAL,
self.scheduler.get_last_lr()[0]
)
self.validate_and_save(cur_step, val_dataset)
logger.info("********** Training Completed **********")
if cfg.LOCAL_RANK in [-1, 0]:
for idx, generator_val_result in enumerate(self.validations):
fmt_header, fmt_value = format_generator_validation(generator_val_result)
if idx == 0:
logger.info(fmt_header)
logger.info(fmt_value)
logger.info("Training finished. Best validation checkpoint %s", self.best_cp_name)
return self.best_cp_name
def _load_saved_state(self, saved_state: CheckpointState):
if self.cfg.GENERATOR.SOLVER.RESET_CHECKPOINT_STEP:
self.step = 0
else:
self.step = saved_state.step
if not self.cfg.GENERATOR.SOLVER.OPTIMIZER.RESET:
if saved_state.optimizer_dict:
logger.info('Loading saved optimizer state ...')
self.optimizer.load_state_dict(saved_state.optimizer_dict)
if saved_state.scheduler_dict:
logger.info("Loading scheduler state %s", saved_state.scheduler_dict)
self.scheduler.load_state_dict(saved_state.scheduler_dict)
def run(cfg):
cfg = setup_cfg_gpu(cfg)
set_seed(cfg.SEED)
logger.info("***** Initializing model components *****")
if cfg.GENERATOR.DO_TRAIN:
cfg.GENERATOR.DATA.TRAIN_DATA_PATH = os.path.join(cfg.GENERATOR.DATA.DATA_PATH, 'mixed', 'train.json')
cfg.GENERATOR.DATA.VAL_DATA_PATH = os.path.join(cfg.GENERATOR.DATA.DATA_PATH, 'mixed', 'dev.json')
checkpoint_path = get_checkpoint_path(cfg, cfg.GENERATOR.MODEL.CHECKPOINT_FILE_NAME)
generator_trainer = GENERATORTrainer(cfg, checkpoint_path=checkpoint_path)
train_dataset = GenDataset(
cfg.GENERATOR.DATA.TRAIN_DATA_PATH,
n_context=cfg.GENERATOR.DATA.NUM_CONTEXT,
normalize=cfg.GENERATOR.DATA.NORMALIZE,
flatten_attr=cfg.GENERATOR.DATA.FLATTEN_ATTRIBUTE
)
val_dataset = GenDataset(
cfg.GENERATOR.DATA.VAL_DATA_PATH,
n_context=cfg.GENERATOR.DATA.NUM_CONTEXT,
normalize=cfg.GENERATOR.DATA.NORMALIZE,
flatten_attr=cfg.GENERATOR.DATA.FLATTEN_ATTRIBUTE
)
best_cp_path = generator_trainer.train(train_dataset, val_dataset=val_dataset)
cfg.dump(stream=open(os.path.join(cfg.GENERATOR.MODEL.MODEL_PATH, f'config_{cfg.EXP}.yaml'), 'w'))
cfg.GENERATOR.MODEL.CHECKPOINT_FILE_NAME = os.path.basename(best_cp_path)
if cfg.GENERATOR.DO_TEST:
cfg.GENERATOR.DATA.TEST_DATA_PATH = os.path.join(cfg.GENERATOR.DATA.DATA_PATH, 'mixed', 'test.json')
checkpoint_path = get_checkpoint_path(cfg, cfg.GENERATOR.MODEL.CHECKPOINT_FILE_NAME)
generator_trainer = GENERATORTrainer(cfg, checkpoint_path=checkpoint_path)
test_dataset = GenDataset(
cfg.GENERATOR.DATA.TEST_DATA_PATH,
n_context=cfg.GENERATOR.DATA.NUM_CONTEXT,
normalize=cfg.GENERATOR.DATA.NORMALIZE,
flatten_attr=cfg.GENERATOR.DATA.FLATTEN_ATTRIBUTE
)
mean_bleu_score, result_data = generator_trainer.evaluate(test_dataset)
combined_result_path = os.path.join(cfg.OUTPUT_PATH, 'combined_result.json')
save_combined_results(result_data, combined_result_path)
logger.info('Combined score saved in %s', combined_result_path)
metrics_dt = {'BLEU': mean_bleu_score}
eval_metrics_path = os.path.join(cfg.OUTPUT_PATH, f'eval_metrics')
save_eval_metrics(metrics_dt, eval_metrics_path)
logger.info('Evaluation done. Score per metric saved in %s', eval_metrics_path)
if __name__ == "__main__":
arguments = docopt(__doc__, argv=None, help=True, version=None, options_first=False)
exp_cfg_path = arguments['--path_cfg_exp']
data_path = arguments['--path_data']
model_path = arguments['--path_model']
output_path = arguments['--path_output']
generator_ckpt = arguments['--generator_ckpt']
version = arguments['--version']
config = get_cfg_defaults()
logger.info("Started logging...")
if exp_cfg_path is not None:
config.merge_from_file(exp_cfg_path)
if data_path is not None:
config.GENERATOR.DATA.DATA_PATH = data_path
if output_path is not None:
config.OUTPUT_PATH = output_path
if generator_ckpt is not None:
config.GENERATOR.MODEL.CHECKPOINT_FILE_NAME = generator_ckpt
if version is None:
version = datetime.now().strftime("%d_%m_%Y-%H_%M_%S")
logger.info(f"Version: {version}")
# Make result folders if they do not exist
config.OUTPUT_PATH = os.path.join(config.OUTPUT_PATH, config.EXP, version)
if not os.path.exists(config.OUTPUT_PATH):
os.makedirs(config.OUTPUT_PATH, exist_ok=False)
print(f'Output path: {config.OUTPUT_PATH}')
logger.info(f'Output path: {config.OUTPUT_PATH}')
if model_path is not None:
config.GENERATOR.MODEL.MODEL_PATH = model_path
else:
config.GENERATOR.MODEL.MODEL_PATH = config.OUTPUT_PATH
print(f'Model path: {config.GENERATOR.MODEL.MODEL_PATH}')
logger.info(f'Model path: {config.GENERATOR.MODEL.MODEL_PATH}')
run(config)
shutil.copy(src='generator_logs.log', dst=os.path.join(config.OUTPUT_PATH, f'generator_logs_{datetime.now().strftime("%d_%m_%Y-%H_%M_%S")}.log'))