-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProb_esti.r
43 lines (33 loc) · 1.25 KB
/
Prob_esti.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
cluster_size_prob = function(r0, kappa, seed, max_size){
prob_list = list(NA)
for (k in 1:length(r0)){
prob = integer(max_size)
for( i in 1:max_size){
prob[i] = exp(lgamma(kappa[k] * i + i - 1) - lgamma(kappa[k]*i) - lgamma(i +1) + (i-1)*log(r0[k]/kappa[k]) -(kappa[k] * i + i - 1 ) * log(1 + r0[k]/kappa[k]))
}
prob_list[[k]] = data.frame(prob)
}
over_size_prob_list = list(NA)
for (k in 1:length(r0)){
over_size_prob = integer(max_size)
for( j in 1:c(max_size)){
if( j ==1 ){
over_size_prob[c(j)] = 1
} else {
over_size_prob[c(j)] = 1 - sum(prob_list[[k]][1:c(j),])
}
}
over_size_prob_list[[k]] = data.frame(over_size_prob)
}
over_size_prob_more_seed_list = list(NA)
for (k in 1:length(r0)){
over_size_prob_more_seed = integer(max_size)
for (j in 1:max_size ){
over_size_prob_more_seed[j] = 1 - ( 1 - over_size_prob_list[[k]][j,])^seed
} over_size_prob_more_seed_list[[k]] = data.frame(over_size_prob_more_seed)
}
results1 = do.call(cbind.data.frame, prob_list)
results2 = do.call(cbind.data.frame, over_size_prob_list)
results3 = do.call(cbind.data.frame, over_size_prob_more_seed_list)
return(list(results1,results2,results3))
}