forked from 1Konny/FactorVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblocks.py
278 lines (230 loc) · 9.2 KB
/
blocks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import torch
import torch.nn as nn
import torch.nn.functional as F
# from agents.utils.sim_path import sim_framework_path
import numpy as np
# code from https://github.com/MishaLaskin/vqvae/tree/master
class ResidualLayer(nn.Module):
"""
One residual layer inputs:
- in_dim : the input dimension
- h_dim : the hidden layer dimension
- res_h_dim : the hidden dimension of the residual block
"""
def __init__(self, in_dim, h_dim, res_h_dim):
super(ResidualLayer, self).__init__()
self.res_block = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(in_dim, res_h_dim, kernel_size=3,
stride=1, padding=1, bias=False),
nn.ReLU(True),
nn.Conv2d(res_h_dim, h_dim, kernel_size=1,
stride=1, bias=False)
)
def forward(self, x):
x = x + self.res_block(x)
return x
class ResidualStack(nn.Module):
"""
A stack of residual layers inputs:
- in_dim : the input dimension
- h_dim : the hidden layer dimension
- res_h_dim : the hidden dimension of the residual block
- n_res_layers : number of layers to stack
"""
def __init__(self, in_dim, h_dim, res_h_dim, n_res_layers):
super(ResidualStack, self).__init__()
self.n_res_layers = n_res_layers
self.stack = nn.ModuleList(
[ResidualLayer(in_dim, h_dim, res_h_dim)] * n_res_layers)
def forward(self, x):
for layer in self.stack:
x = layer(x)
x = F.relu(x)
return x
class Encoder(nn.Module):
"""
This is the q_theta (z|x) network. Given a data sample x q_theta
maps to the latent space x -> z.
For a VQ VAE, q_theta outputs parameters of a categorical distribution.
Inputs:
- in_dim : the input dimension
- h_dim : the hidden layer dimension
- res_h_dim : the hidden dimension of the residual block
- n_res_layers : number of layers to stack
"""
def __init__(self, in_dim, h_dim, n_res_layers, res_h_dim):
super(Encoder, self).__init__()
kernel = 4
stride = 2
self.conv_stack = nn.Sequential(
nn.Conv2d(in_dim, h_dim // 2, kernel_size=kernel,
stride=stride, padding=1),
nn.ReLU(),
nn.Conv2d(h_dim // 2, h_dim, kernel_size=kernel,
stride=stride, padding=1),
nn.ReLU(),
nn.Conv2d(h_dim, h_dim, kernel_size=kernel - 1,
stride=stride - 1, padding=1),
ResidualStack(
h_dim, h_dim, res_h_dim, n_res_layers)
)
def forward(self, x):
return self.conv_stack(x)
class Decoder(nn.Module):
"""
This is the p_phi (x|z) network. Given a latent sample z p_phi
maps back to the original space z -> x.
Inputs:
- in_dim : the input dimension
- h_dim : the hidden layer dimension
- res_h_dim : the hidden dimension of the residual block
- n_res_layers : number of layers to stack
"""
def __init__(self, in_dim, h_dim, n_res_layers, res_h_dim):
super(Decoder, self).__init__()
kernel = 4
stride = 2
self.inverse_conv_stack = nn.Sequential(
nn.ConvTranspose2d(
in_dim, h_dim, kernel_size=kernel - 1, stride=stride - 1, padding=1),
ResidualStack(h_dim, h_dim, res_h_dim, n_res_layers),
nn.ConvTranspose2d(h_dim, h_dim // 2,
kernel_size=kernel, stride=stride, padding=1),
nn.ReLU(),
nn.ConvTranspose2d(h_dim // 2, 3, kernel_size=kernel,
stride=stride, padding=1)
)
def forward(self, x):
return self.inverse_conv_stack(x)
class DiagonalGaussianDistribution(object):
def __init__(self, parameters, deterministic=False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
def sample(self):
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
return x
def kl(self, other=None):
if self.deterministic:
return torch.Tensor([0.])
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean, 2)
+ self.var - 1.0 - self.logvar,
dim=[1, 2, 3])
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
dim=[1, 2, 3])
def kl_splits(self, latent_unit=6):
mean_splits = self.mean.chunk(latent_unit, dim=-1)
var_splits = self.var.chunk(latent_unit, dim=-1)
logvar_splits = self.logvar.chunk(latent_unit, dim=-1)
kl_loss = 0
for mean, var, logvar in zip(mean_splits, var_splits, logvar_splits):
kl_split = 0.5 * torch.sum(torch.pow(mean, 2)
+ var - 1.0 - logvar,
dim=-1)
kl_loss += torch.sum(kl_split) / kl_split.shape[0]
return kl_loss / latent_unit
def nll(self, sample, dims=[1, 2, 3]):
if self.deterministic:
return torch.Tensor([0.])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims)
def mode(self):
return self.mean
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, mid_channels=None, bn=False):
super(ResBlock, self).__init__()
if mid_channels is None:
mid_channels = out_channels
layers = [
nn.ReLU(),
nn.Conv2d(in_channels, mid_channels,
kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(mid_channels, out_channels,
kernel_size=1, stride=1, padding=0)
]
if bn:
layers.insert(2, nn.BatchNorm2d(out_channels))
self.convs = nn.Sequential(*layers)
def forward(self, x):
return x + self.convs(x)
class View(nn.Module):
def __init__(self, size):
super(View, self).__init__()
self.size = size
def forward(self, tensor):
return tensor.reshape(self.size)
class Encoder_vae_128(nn.Module):
def __init__(self, d, bn=True, num_channels=3, latent_dim=10, ckpt_path=None):
super(Encoder_vae_128, self).__init__()
self.latent_dim = latent_dim
self.encoder = nn.Sequential(
nn.Conv2d(num_channels, d, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d),
nn.ReLU(inplace=True),
nn.Conv2d(d, d, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d),
nn.ReLU(inplace=True),
nn.Conv2d(d, d, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d),
nn.Conv2d(d, d, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d),
nn.Conv2d(d, d, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d),
nn.ReLU(inplace=True),
ResBlock(d, d, bn=bn),
nn.BatchNorm2d(d),
nn.ReLU(inplace=True),
ResBlock(d, d, bn=bn),
View((-1, d * 4 * 4)), # batch_size x 2048
nn.Linear(2048, self.latent_dim)
)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path)
def forward(self, x):
moments = self.encoder(x)
return moments
# def init_from_ckpt(self, path):
# path = sim_framework_path(path)
# ckpt = torch.load(path)
# self.load_state_dict(ckpt['model.vae_encoder'])
# print(f"Loaded vae_encoder from {path}")
class Decoder_128(nn.Module):
def __init__(self, latent_dim, d, output_channels, bn=True):
super(Decoder_128, self).__init__()
self.fc = nn.Linear(latent_dim, d*8*8)
self.decoder = nn.Sequential(
View((-1, d, 8, 8)),
ResBlock(d, d, bn=bn),
nn.BatchNorm2d(d),
nn.ReLU(inplace=True),
ResBlock(d, d, bn=bn),
nn.BatchNorm2d(d),
nn.ConvTranspose2d(d, d//2, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d//2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(d//2, d//4, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d//4),
nn.ConvTranspose2d(d//4, d//8, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(d//8),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(d//8, output_channels, kernel_size=4, stride=2, padding=1),
nn.Sigmoid() # To ensure output values are in the range [0, 1]
)
def forward(self, z):
z = self.fc(z)
x_recon = self.decoder(z)
return x_recon