-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpythoncode
67 lines (50 loc) · 1.94 KB
/
pythoncode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from __future__ import print_function
import cv2
import numpy as np
import pytesseract
from PIL import Image
#from pytesseract import image_to_string
# Path of working folder on Disk
##src_path = "tes-img/"
src_path = "C:/Users/xxxxx/learning/pic/y/"
tt = src_path + "your.png"
##print (tt)
##pytesseract.setVariable("tessedit_char_whitelist","ABCDEFGHIJKLMNOPQRSTUVWXYZ")
##print(pytesseract.image_to_string(screen, config='tessedit_char_whitelist=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZFailed to redirect !'))
def get_string(img_path):
# Read image with opencv
img = cv2.imread(img_path)
##img = cv2.resize(img, dsize=(140, 54), interpolation=cv2.INTER_CUBIC)
# Convert to gray
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
# Write image after removed noise
cv2.imwrite(src_path + "removed_noise.png", img)
# Apply threshold to get image with only black and white
#img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
# Write the image after apply opencv to do some ...
cv2.imwrite(src_path + "thres.png", img)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open(src_path + "thres.png"), lang='eng', \
config='--psm 10 --oem 3 -c tessedit_char_whitelist=0123456789')
# Remove template file
#os.remove(temp)
#print(result)
#result = result.encode('ascii')
#print("1",result)
i = "Series ber tind"
#print (i)
if ( result == i):
#print ("failed ##!!")
tt = "failed ##!!"
else :
#print ("Not Match")
tt ="succesful"
#return result
return tt
print('--- Start recognize text from image ---')
print(get_string(src_path + "your.png") )
print("------ Done -------")