-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
360 lines (350 loc) · 19.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from dataset import Seq2SeqDataset, TestDataset
from model import TransformerModel
import argparse
import numpy as np
import os
from tqdm import tqdm
import logging
import transformers
from iterative_training import Iter_trainer
import math
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--embedding-dim", default=256, type=int)
parser.add_argument("--hidden-size", default=512, type=int)
parser.add_argument("--num-layers", default=6, type=int)
parser.add_argument("--batch-size", default=1024, type=int)
parser.add_argument("--test-batch-size", default=16, type=int)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--weight-decay", default=0, type=float)
parser.add_argument("--num-epoch", default=20, type=int)
parser.add_argument("--save-interval", default=10, type=int)
parser.add_argument("--save-dir", default="model_1")
parser.add_argument("--ckpt", default="ckpt_30.pt")
parser.add_argument("--dataset", default="FB15K237")
parser.add_argument("--label-smooth", default=0.5, type=float)
parser.add_argument("--l-punish", default=False, action="store_true") # during generation, add punishment for length
parser.add_argument("--beam-size", default=128, type=int) # during generation, beam size
parser.add_argument("--no-filter-gen", default=False, action="store_true") # during generation, not filter unreachable next token
parser.add_argument("--test", default=False, action="store_true") # for test mode
parser.add_argument("--encoder", default=False, action="store_true") # only use TransformerEncoder
parser.add_argument("--trainset", default="6_rev_rule")
parser.add_argument("--loop", default=False, action="store_true") # add self-loop instead of <eos>
parser.add_argument("--prob", default=0, type=float) # ratio of replaced token
parser.add_argument("--max-len", default=3, type=int) # maximum number of hops considered
parser.add_argument("--iter", default=False, action="store_true") # switch for iterative training
parser.add_argument("--iter-batch-size", default=128, type=int)
parser.add_argument("--smart-filter", default=False, action="store_true") # more space consumed, less time; switch on when --filter-gen
parser.add_argument("--warmup", default=3, type=float) # warmup steps ratio
parser.add_argument("--self-consistency", default=False, action="store_true") # self-consistency
parser.add_argument("--output-path", default=False, action="store_true") # output top correct path in a file (for interpretability evaluation)
args = parser.parse_args()
return args
def evaluate(model, dataloader, device, args, true_triples=None, valid_triples=None):
model.eval()
beam_size = args.beam_size
l_punish = args.l_punish
max_len = 2 * args.max_len + 1
restricted_punish = -30
mrr, hit, hit1, hit3, hit10, count = (0, 0, 0, 0, 0, 0)
vocab_size = len(model.dictionary)
eos = model.dictionary.eos()
bos = model.dictionary.bos()
rev_dict = dict()
lines = []
for k in model.dictionary.indices.keys():
v = model.dictionary.indices[k]
rev_dict[v] = k
with tqdm(dataloader, desc="testing") as pbar:
for samples in pbar:
pbar.set_description("MRR: %f, Hit@1: %f, Hit@3: %f, Hit@10: %f" % (mrr/max(1, count), hit1/max(1, count), hit3/max(1, count), hit10/max(1, count)))
batch_size = samples["source"].size(0)
candidates = [dict() for i in range(batch_size)]
candidates_path = [dict() for i in range(batch_size)]
source = samples["source"].unsqueeze(dim=1).repeat(1, beam_size, 1).to(device)
prefix = torch.zeros([batch_size, beam_size, max_len], dtype=torch.long).to(device)
prefix[:, :, 0].fill_(model.dictionary.bos())
lprob = torch.zeros([batch_size, beam_size]).to(device)
clen = torch.zeros([batch_size, beam_size], dtype=torch.long).to(device)
# first token: choose beam_size from only vocab_size, initiate prefix
tmp_source = samples["source"]
tmp_prefix = torch.zeros([batch_size, 1], dtype=torch.long).to(device)
tmp_prefix[:, 0].fill_(model.dictionary.bos())
logits = model.logits(tmp_source, tmp_prefix).squeeze()
if args.no_filter_gen:
logits = F.log_softmax(logits, dim=-1)
else:
restricted = torch.ones([batch_size, vocab_size]) * restricted_punish
index = tmp_source[:, 1].cpu().numpy()
for i in range(batch_size):
if index[i] in true_triples:
if args.smart_filter:
restricted[i] = true_triples[index[i]]
else:
idx = torch.LongTensor(true_triples[index[i]]).unsqueeze(0)
restricted[i] = -restricted_punish * torch.zeros(1, vocab_size).scatter_(1, idx, 1) + restricted_punish
logits = F.log_softmax(logits+restricted.to(device), dim=-1) # batch_size * vocab_size
logits = logits.view(-1, vocab_size)
argsort = torch.argsort(logits, dim=-1, descending=True)[:, :beam_size]
prefix[:, :, 1] = argsort[:, :]
lprob += torch.gather(input=logits, dim=-1, index=argsort)
clen += 1
target = samples["target"].cpu()
for l in range(2, max_len):
tmp_prefix = prefix.unsqueeze(dim=2).repeat(1, 1, beam_size, 1)
tmp_lprob = lprob.unsqueeze(dim=-1).repeat(1, 1, beam_size)
tmp_clen = clen.unsqueeze(dim=-1).repeat(1, 1, beam_size)
bb = batch_size * beam_size
all_logits = model.logits(source.view(bb, -1), prefix.view(bb, -1)).view(batch_size, beam_size, max_len, -1)
logits = torch.gather(input=all_logits, dim=2, index=clen.unsqueeze(-1).unsqueeze(-1).repeat(1, 1, 1, vocab_size)).squeeze(2)
# restrict to true_triples, compute index for true_triples
if args.no_filter_gen:
logits = F.log_softmax(logits, dim=-1)
else:
restricted = torch.ones([batch_size, beam_size, vocab_size]) * restricted_punish
hid = prefix[:, :, l-2]
if l == 2:
hid = source[:, :, 1]
rid = prefix[:, :, l-1]
if l % 2 == 0:
index = vocab_size * rid + hid
else:
index = rid
index = index.cpu().numpy()
for i in range(batch_size):
for j in range(beam_size):
if index[i][j] in true_triples:
if args.smart_filter:
restricted[i][j] = true_triples[index[i][j]]
else:
idx = torch.LongTensor(true_triples[index[i][j]]).unsqueeze(0)
restricted[i][j] = -restricted_punish * torch.zeros(1, vocab_size).scatter_(1, idx, 1) + restricted_punish
logits = F.log_softmax(logits+restricted.to(device), dim=-1)
argsort = torch.argsort(logits, dim=-1, descending=True)[:, :, :beam_size]
tmp_clen = tmp_clen + 1
tmp_prefix = tmp_prefix.scatter_(dim=-1, index=tmp_clen.unsqueeze(-1), src=argsort.unsqueeze(-1))
tmp_lprob += torch.gather(input=logits, dim=-1, index=argsort)
tmp_prefix, tmp_lprob, tmp_clen = tmp_prefix.view(batch_size, -1, max_len), tmp_lprob.view(batch_size, -1), tmp_clen.view(batch_size, -1)
if l == max_len-1:
argsort = torch.argsort(tmp_lprob, dim=-1, descending=True)[:, :(2*beam_size)]
else:
argsort = torch.argsort(tmp_lprob, dim=-1, descending=True)[:, :beam_size]
prefix = torch.gather(input=tmp_prefix, dim=1, index=argsort.unsqueeze(-1).repeat(1, 1, max_len))
lprob = torch.gather(input=tmp_lprob, dim=1, index=argsort)
clen = torch.gather(input=tmp_clen, dim=1, index=argsort)
# filter out next token after <end>, add to candidates
for i in range(batch_size):
for j in range(beam_size):
if prefix[i][j][l].item() == eos:
candidate = prefix[i][j][l-1].item()
if l_punish:
prob = lprob[i][j].item() / int(l / 2)
else:
prob = lprob[i][j].item()
lprob[i][j] -= 10000
if candidate not in candidates[i]:
if args.self_consistency:
candidates[i][candidate] = math.exp(prob)
else:
candidates[i][candidate] = prob
candidates_path[i][candidate] = prefix[i][j].cpu().numpy()
else:
if prob > candidates[i][candidate]:
candidates_path[i][candidate] = prefix[i][j].cpu().numpy()
if args.self_consistency:
candidates[i][candidate] += math.exp(prob)
else:
candidates[i][candidate] = max(candidates[i][candidate], prob)
# no <end> but reach max_len
if l == max_len-1:
for i in range(batch_size):
for j in range(beam_size*2):
candidate = prefix[i][j][l].item()
if l_punish:
prob = lprob[i][j].item() / int(max_len/2)
else:
prob = lprob[i][j].item()
if candidate not in candidates[i]:
if args.self_consistency:
candidates[i][candidate] = math.exp(prob)
else:
candidates[i][candidate] = prob
candidates_path[i][candidate] = prefix[i][j].cpu().numpy()
else:
if prob > candidates[i][candidate]:
candidates_path[i][candidate] = prefix[i][j].cpu().numpy()
if args.self_consistency:
candidates[i][candidate] += math.exp(prob)
else:
candidates[i][candidate] = max(candidates[i][candidate], prob)
target = samples["target"].cpu()
for i in range(batch_size):
hid = samples["source"][i][1].item()
rid = samples["source"][i][2].item()
index = vocab_size * rid + hid
if index in valid_triples:
mask = valid_triples[index]
for tid in candidates[i].keys():
if tid == target[i].item():
continue
elif args.smart_filter:
if mask[tid].item() == 0:
candidates[i][tid] -= 100000
else:
if tid in mask:
candidates[i][tid] -= 100000
count += 1
candidate_ = sorted(zip(candidates[i].items(), candidates_path[i].items()), key=lambda x:x[0][1], reverse=True)
candidate = [pair[0][0] for pair in candidate_]
candidate_path = [pair[1][1] for pair in candidate_]
candidate = torch.from_numpy(np.array(candidate))
ranking = (candidate[:] == target[i]).nonzero()
path_token = rev_dict[hid] + " " + rev_dict[rid] + " " + rev_dict[target[i].item()] + '\t'
if ranking.nelement() != 0:
path = candidate_path[ranking]
for token in path[1:-1]:
path_token += (rev_dict[token]+' ')
path_token += (rev_dict[path[-1]]+'\t')
path_token += str(ranking.item())
ranking = 1 + ranking.item()
mrr += (1 / ranking)
hit += 1
if ranking <= 1:
hit1 += 1
if ranking <= 3:
hit3 += 1
if ranking <= 10:
hit10 += 1
else:
path_token += "wrong"
lines.append(path_token+'\n')
if args.output_path:
with open("test_output_squire.txt", "w") as f:
f.writelines(lines)
logging.info("[MRR: %f] [Hit@1: %f] [Hit@3: %f] [Hit@10: %f]" % (mrr/count, hit1/count, hit3/count, hit10/count))
return hit/count, hit1/count, hit3/count, hit10/count
def train(args):
args.dataset = os.path.join('data', args.dataset)
save_path = os.path.join('models_new', args.save_dir)
ckpt_path = os.path.join(save_path, 'checkpoint')
if not os.path.exists(save_path):
os.mkdir(save_path)
if not os.path.exists(ckpt_path):
os.mkdir(ckpt_path)
logging.basicConfig(level=logging.DEBUG,
filename=save_path+'/train.log',
filemode='w',
format=
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
)
logging.info(args)
device = "cuda" if torch.cuda.is_available() else "cpu"
train_set = Seq2SeqDataset(data_path=args.dataset+"/", vocab_file=args.dataset+"/vocab.txt", device=device, args=args)
valid_set = TestDataset(data_path=args.dataset+"/", vocab_file=args.dataset+"/vocab.txt", device=device, src_file="valid_triples.txt")
test_set = TestDataset(data_path=args.dataset+"/", vocab_file=args.dataset+"/vocab.txt", device=device, src_file="test_triples.txt")
train_valid, eval_valid = train_set.get_next_valid()
train_loader = DataLoader(train_set, batch_size=args.batch_size, collate_fn=train_set.collate_fn, shuffle=True)
valid_loader = DataLoader(valid_set, batch_size=args.test_batch_size, collate_fn=test_set.collate_fn, shuffle=True)
test_loader = DataLoader(test_set, batch_size=args.test_batch_size, collate_fn=test_set.collate_fn, shuffle=True)
model = TransformerModel(args, train_set.dictionary).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
steps = len(train_loader)
total_step_num = len(train_loader) * args.num_epoch
warmup_steps = total_step_num / args.warmup
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, warmup_steps, total_step_num)
# evaluate(model, test_loader, device, args, train_valid, eval_valid)
if args.iter:
iter_trainer = Iter_trainer(args.dataset, args.iter_batch_size, 32, 4)
iter_epoch = []
max_len = args.max_len
total = 0
for i in range(1, max_len+1):
total += (1/i)
epochs = 0
for i in range(1, max_len+1):
iter_epoch.append(int(args.num_epoch/(total*i)))
epochs += int(args.num_epoch/(total*i))
iter_epoch[-1] += (args.num_epoch-epochs)
curr_iter = -1
curr_iter_epoch = 0
logging.info(
"[Iter0: %d] [Iter1: %d] [Iter2: %d]"
% (iter_epoch[0], iter_epoch[1], iter_epoch[2])
)
steps = 0
for epoch in range(args.num_epoch):
if args.iter:
if curr_iter_epoch == 0: # start next iteration
curr_iter += 1
curr_iter_epoch = iter_epoch[curr_iter]
# label new dataset
if curr_iter > 0:
logging.info("--------Iterating--------")
(src_lines, tgt_lines) = iter_trainer.get_iter(model, curr_iter)
train_set.src_lines += src_lines
train_set.tgt_lines += tgt_lines
train_loader = DataLoader(train_set, batch_size=args.batch_size, collate_fn=train_set.collate_fn, shuffle=True)
# new scheduler
step_num = len(train_loader) * curr_iter_epoch
warmup_steps = step_num / args.warmup
if curr_iter != 0:
optimizer = optim.Adam(model.parameters(), lr=args.lr / 5, weight_decay=args.weight_decay) # fine-tuning with smaller lr
warmup_steps = 0
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, warmup_steps, step_num)
curr_iter_epoch -= 1
model.train()
with tqdm(train_loader, desc="training") as pbar:
losses = []
for samples in pbar:
optimizer.zero_grad()
loss = model.get_loss(**samples)
loss.backward()
optimizer.step()
scheduler.step()
steps += 1
losses.append(loss.item())
pbar.set_description("Epoch: %d, Loss: %0.8f, lr: %0.6f" % (epoch + 1, np.mean(losses), optimizer.param_groups[0]['lr']))
logging.info(
"[Epoch %d/%d] [train loss: %f]"
% (epoch + 1, args.num_epoch, np.mean(losses))
)
if (epoch % args.save_interval == 0 and epoch != 0) or (epoch == args.num_epoch - 1):
torch.save(model.state_dict(), ckpt_path + "/ckpt_{}.pt".format(epoch + 1))
with torch.no_grad():
evaluate(model, test_loader, device, args, train_valid, eval_valid)
def checkpoint(args):
args.dataset = os.path.join('data', args.dataset)
save_path = os.path.join('models_new', args.save_dir)
ckpt_path = os.path.join(save_path, 'checkpoint')
if not os.path.exists(ckpt_path):
print("Invalid path!")
return
logging.basicConfig(level=logging.DEBUG,
filename=save_path+'/test.log',
filemode='w',
format=
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
)
device = "cuda" if torch.cuda.is_available() else "cpu"
train_set = Seq2SeqDataset(data_path=args.dataset+"/", vocab_file=args.dataset+"/vocab.txt", device=device, args=args)
test_set = TestDataset(data_path=args.dataset+"/", vocab_file=args.dataset+"/vocab.txt", device=device, src_file="test_triples.txt")
test_loader = DataLoader(test_set, batch_size=args.test_batch_size, collate_fn=test_set.collate_fn, shuffle=True)
train_valid, eval_valid = train_set.get_next_valid()
model = TransformerModel(args, train_set.dictionary)
model.load_state_dict(torch.load(os.path.join(ckpt_path, args.ckpt)))
model.args = args
model = model.to(device)
with torch.no_grad():
evaluate(model, test_loader, device, args, train_valid, eval_valid)
if __name__ == "__main__":
args = get_args()
if args.test:
checkpoint(args)
else:
train(args)