-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
84 lines (71 loc) · 2.54 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import numpy as np
import matplotlib.pyplot as plt
def loss(predicts, targets):
"""
total loss for BioFaceNet, which consists of 4 losses
@input:
predicts: (a dict)
- 'appearance': predicted appearance map
- 'b': predicted 2-dim camera sensitivity parameters
- 'specular': predicted specular map
- 'shading': predicted shading
targets: (a dict)
- 'appearance': target appearance map
- 'shading': target shading
- 'mask': face region mask
@output:
total_loss
"""
# weights for app, prior, spars, shad loss
w = [1e-3, 1e-4, 1e-5, 1e-5]
total_loss =\
appearance_loss(predicts['appearance'], targets['appearance'], targets['mask']) * w[0] +\
prior_loss(predicts['b']) * w[1] +\
sparsity_loss(predicts['specular']) * w[2] +\
shading_loss(predicts['shading'], targets['shading'], targets['mask']) * w[3]
return total_loss
def appearance_loss(appearance, target_appearance, mask):
"""
appearance reconstruction L2-loss
loss = ||i_{linRGB} - i_{linObs}||^2
"""
diff = (appearance - target_appearance) * mask
# print("predicted: ", appearance)
# print("target: ", target_appearance)
# print("APPPPPPSHAPE: ", np.moveaxis(appearance[0].detach().numpy(), 0,-1).shape)
# plt.imshow(np.moveaxis(appearance[0].detach().numpy(), 0,-1))
# plt.show()
# print("DIFFFFFF: =", diff.shape)
loss = torch.sum(diff**2)
# print("APPEARANCE LOSS: ", loss)
return loss
def prior_loss(b):
"""
camera prior L2-loss on sensitivity parameters
loss = ||b||^2
"""
loss = torch.sum(b**2)
# print("PRIOR LOSS: ", loss)
return loss
def sparsity_loss(spec):
"""
specularity L1-loss
loss = ||spec||^1
"""
loss = torch.sum(spec)
# print("SPARS LOSS: ", loss)
return loss
def shading_loss(shading, target_shading, mask):
"""
shading L2-loss
TODO: there is an extra linear regression of scaling applied to predicted shading,
not sure if Matlab version implemented it
"""
scale = torch.sum(torch.sum(target_shading * shading * mask, dim=2, keepdim=True), dim=3, keepdim=True) / torch.sum(torch.sum(shading * shading * mask, dim=2, keepdim=True), dim=3, keepdim=True)
# FIXME: after scale, shading value will explode, remove scaling temporarily
shading = shading * scale
diff = (shading - target_shading) * mask
loss = torch.sum(diff**2)
# print("SHADING LOSS: ", loss)
return loss