-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCRISP-DM-4.py
187 lines (155 loc) · 6.92 KB
/
CRISP-DM-4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import chi2
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import LinearSVC
from sklearn.model_selection import cross_val_score
data = pd.read_csv("data/data-set2.csv")
print("*"*10, "VERI SETI", "*"*10)
print(data)
print("\n")
# categoryleri birer sayı ile temsil edecek olan sütunu ekle
data['category'] = data['category'].astype('category')
data['category_id'] = data['category'].cat.codes
# kategoriden id'ye id'den kategoriye hızlı erişim için sözlükler oluşturma
id_to_category = pd.Series(data.category.values, index=data.category_id).to_dict()
category_to_id = {v:k for k,v in id_to_category.items()}
features, targets = data['text'], data['category_id']
# Verileri Eğitim ve Test olarak ayırma
# train_size -> eğitime ayrılacak veri oranı (max 1)
# test_size -> teste ayrılaca veri oranı (1 - train_size)
# random_state -> rastgeleleği isimlendirmek (bir numara atamak)
# shuffle -> verileri karıştırmak
# stratify -> verilerin targets değerlerine göre eşit dağılımını sağlamak
all_train_features, test_features, all_train_targets, test_targets = train_test_split(
features, targets,
train_size=0.8,
test_size=0.2,
random_state=42,
shuffle=True,
stratify=targets
)
# Verilerin kırpılma oranı
reduce_ratio = 0.05
reduced_train_features, _, reduced_train_targets, _= train_test_split(
all_train_features, all_train_targets,
train_size=reduce_ratio,
random_state=42,
shuffle=True,
stratify=all_train_targets
)
reduced_test_features, _, reduced_test_targets, _ = train_test_split(
test_features, test_targets,
train_size=reduce_ratio,
random_state=42,
shuffle=True,
stratify=test_targets
)
train_features, val_features, train_targets, val_targets = train_test_split(
reduced_train_features, reduced_train_targets,
train_size=0.9,
random_state=42,
shuffle = True,
stratify=reduced_train_targets
)
reducedDataAnalizIndex = [
"Train", "Test", "Validation"
]
reducedDataAnaliz = [
len(train_features), len(reduced_test_targets), len(val_targets)
]
reducedDataAnalizSeries = pd.Series(reducedDataAnaliz, index=reducedDataAnalizIndex)
reducedDataAnalizSeries.to_csv("data/azaltilmis-veri-analizi.csv")
# Vektörleştirme
# sublinear_tf -> 1+log() ölçeklendirmesi
# min_df -> bu sayıdan küçük olan terimleri yoksay
# nomr -> normalizasyon , l2 -> Bir verideki (satırdaki) her bir sayının karesinin
# toplamı 1 olacak şekilde ölçeklendiren bir normalizasyon türü
# ngram_range -> unigram ve bigram ' ları temsil eder.
# unigram -> tek kelimeleri ifade eder
# bigram -> ikili kelimeleri ifade eder
# (1, 1) -> sadece unigram, (2, 2) -> sadece bigram, (1, 2) -> unigram ve bigram
tfidf = TfidfVectorizer(sublinear_tf=True, min_df=5, norm='l2', ngram_range=(1, 2))
train_features_transform = tfidf.fit_transform(train_features).toarray()
labels = train_targets
# chi2 -> ki-kare testi (chi-square test)
N = 2
for category, category_id in sorted(category_to_id.items()):
features_chi2 = chi2(train_features_transform, labels == category_id)
indices = np.argsort(features_chi2[0])
feature_names = tfidf.get_feature_names_out()[indices]
unigrams = [v for v in feature_names if len(v.split(' ')) == 1]
bigrams = [v for v in feature_names if len(v.split(' ')) == 2]
print("# '{}':".format(category))
print(" İlişkili ilk {} unigram:\n. {}".format(N, '\n. '.join(unigrams[:N])))
print(" İlişkili son {} unigram:\n. {}".format(N, '\n. '.join(unigrams[-N:])))
print(" İlişkili ilk {} bigram:\n. {}".format(N, '\n. '.join(bigrams[:N])))
print(" İlişkili son {} bigram:\n. {}".format(N, '\n. '.join(bigrams[-N:])))
print("")
# Verileri Naive Bayes Sınıflandırması ile eğitmek
count_vect = CountVectorizer()
tfidf_transformer = TfidfTransformer()
train_feature_counts = count_vect.fit_transform(train_features)
train_features_tfidf = tfidf_transformer.fit_transform(train_feature_counts)
clf = MultinomialNB().fit(train_features_tfidf, train_targets)
models = [
RandomForestClassifier(n_estimators=200, max_depth=3, random_state=0),
LinearSVC(),
MultinomialNB(),
LogisticRegression(random_state=0),
]
CV = 5
cv_df = pd.DataFrame(index=range(CV * len(models)))
entries = []
for model in models:
model_name = model.__class__.__name__
accuracies = cross_val_score(model, train_features_transform, labels, scoring='accuracy', cv=CV)
for fold_idx, accuracy in enumerate(accuracies):
entries.append((model_name, fold_idx, accuracy))
cv_df = pd.DataFrame(entries, columns=['model_name', 'fold_idx', 'accuracy'])
#import seaborn as sns
#sns.boxplot(x='model_name', y='accuracy', data=cv_df)
#sns.stripplot(x='model_name', y='accuracy', data=cv_df,
# size=8, jitter=True, edgecolor="gray", linewidth=2)
#plt.show()
cv_df = cv_df.groupby('model_name').accuracy.mean()
cv_df.to_csv("data/model-dogruluk-oranlari.csv")
model = LinearSVC()
vectorizer = CountVectorizer()
tfidf = TfidfTransformer()
train_features_vect = vectorizer.fit_transform(train_features)
train_features_tfidf = c_tfidf.fit_transform(train_features_vect)
model = model.fit(train_features_tfidf, train_targets)
test_targets_vect = vectorizer.transform(reduced_test_features)
test_result = model.predict(test_targets_vect)
test_result = pd.Series(test_result)
real_result = reduced_test_targets
test_result_group_by_category = test_result.value_counts().sort_index()
real_result_group_by_category = real_result.value_counts().sort_index()
test_result_group_by_category.to_csv("data/test_result_group_by_category.csv")
real_result_group_by_category.to_csv("data/real_result_group_by_category.csv")
metr=metrics.classification_report(test_result, real_result, target_names=data['category'].unique(), output_dict=True)
metr = pd.DataFrame(metr).transpose()
metr.to_csv("data/test_result_metrics.csv")
# testGiris = input("Kategorisi belirlenecek bir veri girin:")
# print("Metin {} kategoriye ait".format(id_to_category[model.predict(c_vect.transform([text]))[0]]))
# d_targets = reduced_test_targets.copy()
""""
def pred(text):
... count = count_vect.fit_transform(text)
... tf = tfidf_transformer.fit_transform(count)
... print("sonucc : ", model.predict(tf))
...
>>> def run():
... i = input("Text ya da null (cikis): ")
... if i == None:
... exit()
... else:
... pred(i)
"""""