-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfree_energy_plots.py
309 lines (256 loc) · 12.4 KB
/
free_energy_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 28 17:20:34 2021
@author: Lauren
"""
import matplotlib.pyplot as plt
import numpy as np
from sys import argv, exit
def main(argv):
"""
Make free energy plots for a given solute.
Input: python free_energy_plots.py solute solvent1 solvent2 ...
For each solute-solvent combination, generates two plots--one with the free
energy change between individual lambda steps and a second for the
cummulative free enegy change at each lambda step.
"""
# Check command line input, requires a solute and at least one solvent
if len(argv) < 3:
print("Usage: python free_energy_plots.py solute solvent1 solvent2 ...")
exit(1)
# Assign command line arguements
solute = argv[1]
solvents = []
for solvent in argv[2:]:
solvents.append(solvent)
# Dictionary for solute name from abbreviation
names = {"PF7" : r"Phenyl$-$CF$_2-$PF$_5$", \
"NF7" : r"Naphthalene$-$CF$_2-$PF$_5$"}
# Dictionary containing bar output as bar[solvent]["delta_Gs","delta_stds",
# "cummulative", "lambdas", "l", "total_dg", "total_std"]
data = free_energy_output(solute, solvents)
# Subtract the energy related to the counterion
ion_data = free_energy_output("NA", solvents)
# Apply the finite size correction by adding the Wigner self-interaction energy term
ion_data = finite_size_correction(solvents, ion_data)
# Generate the relevant plots of the
free_energy_plots(solute, solvents, data, ion_data, names)
return None
class Bar():
"""Store important outputs obtained from the "gmx bar ..." module."""
def __init__(self, solvent):
self.solvent = solvent
self.dG = []
self.dSTD = []
self.cummulative = []
self.lambdas = []
self.total_dG = 0
self.total_STD = 0
self.size_correct = False
def free_energy_output(solute, solvents):
"""
Extract the data from "bar.out" for each solute-solvent.
Reads bennett acceptance ratio output for each solute-solvent combination
and store it in data[solute] as a "Bar" object.
Parameters
----------
solute : str
Name of the solute
solvents : (str) list
Names of the solvents
Returns
-------
bar : (Bar) dict
Dictionary containing Bar objects with solvents as keys
"""
# Grab bennett acceptance ratio output for each solvent and store in
# data[solute] as a "Bar" object""
files = []
data = {}
for solvent in solvents:
path = "{0}_{1}/bar.out".format(solute,solvent)
files.append(path)
for filename, solv in zip(files, solvents):
with open(filename) as file:
bar_out = file.readlines()
bar_data = Bar(solv)
for i, line in enumerate(bar_out):
if "Final results in kJ/mol:" in line:
initial = i
if "total" in line:
total_dg = float(line.split("DG")[1].split()[0])
total_std = float(line.split()[-1])
break
delta_Gs, delta_stds, cummulative, lambdas, l = [], [], [0], [], 0
for line in bar_out[initial:]:
if "point" in line:
dg = line.split("DG")[1].split()[0]
std = line.split()[-1]
delta_Gs.append(float(dg))
delta_stds.append(float(std))
cummulative.append(cummulative[-1] + delta_Gs[-1])
l += 1
lambdas.append(l)
bar_data.dG, bar_data.dSTD = delta_Gs, delta_stds
bar_data.cummulative, bar_data.lambdas = cummulative, lambdas
bar_data.total_dG, bar_data.total_std = total_dg, total_std
data[solv] = bar_data
return data
def finite_size_correction(solvents, data):
"""
This correction is not negligible for solvents with low dielectric constants
Includes the self-interaction between periodic images of the ion and the
uniform background charge as well as undersolvation. The volume during the
first 5 lambda steps is entered in manually.
"""
# dielectric of H2O: https://doi.org/10.1021/acs.jcim.8b00026
# dielectric of DCM: https://doi.org/10.1021/ct200731v
dielectrics = {"water" : 96.2, "DCM" : 10.1}
cubic_constant = 2.837297
# 1/(4*pi*(permittivity of vacuum))
constant_frac = 1 / (4 * np.pi * 8.854187 * 10 ** (-12))
elem_charge = 1.602176 * 10 ** (-19)
charges = [1,0.75,0.50,0.25,0.0]
volumes = {"water" : [31.8994,31.8988,31.9122,31.9035,31.9031],
"DCM" : [31.1522,31.1884,31.2256,31.2713,31.2483]}
for solvent in solvents:
cummulative_correction = 0
data[solvent].size_correct = True
for i in range(4):
length_ave = (volumes[solvent][i] + volumes[solvent][i+1]) / 2
length = length_ave ** (1/3) * 10 ** (-9)
original = data[solvent].dG[i]
charge_diff = charges[i+1] ** 2 - charges[i] ** 2
charge_diff = charge_diff * (elem_charge ** 2) * 6.02214 * 10 ** (23)
#charge = charges[i] ** 2 * (elem_charge ** 2) * 6.02214 * 10 ** (23)
correction = constant_frac * cubic_constant * charge_diff / 2 / dielectrics[solvent] / length / 1000
cummulative_correction -= correction
data[solvent].dG[i] = original - correction
data[solvent].cummulative[i+1] += cummulative_correction
for k, j in enumerate(data[solvent].cummulative[5:]):
data[solvent].cummulative[k+5] = j - cummulative_correction
print("The finite size correction for Na in {0} is {1:.2} kJ/mol".format(\
solvent, cummulative_correction))
return data
def free_energy_plots(solute, solvents, data, data_ion, names):
# Make figure with 2 subplots per solvent
fig, axes = plt.subplots(len(solvents), 2, figsize=(12,6*len(solvents)), \
constrained_layout=True)
# Set up variables
font = {'color': 'black', 'weight': 'semibold', 'size': 16}
solvents2x = [x for pair in zip(solvents, solvents) for x in pair]
coulomb_axis = range(1,6,1)
lj_axis = range(5,20,1)
totals = {}
for solvent in solvents:
raw = data[solvent].cummulative[-1]
ion = data_ion[solvent].cummulative[-1]
totals[solvent] = -(raw - ion)
print("raw is {0}, ion is {1} and total is {2} in {3}".format(raw, ion, totals[solvent], solvent))
deldelG = totals[solvents[1]] - totals[solvents[0]]
logk = - deldelG / (298 * 8.314/1000 * 2.3026)
if data_ion["water"].size_correct:
correction = "with size correction"
else:
correction = "without corrections"
#title = "{0}; log K = {1}".format(names[solute],np.round(logk,2))
title = "log K = {0}; {1}".format(np.round(logk,2), correction)
solv_color = {"water" : "skyblue", "DCM" : "thistle"}
# For even plot_type: lambda vs. dG_lambda;
# otherwise: lambda vs dG(cummulative)
plot_type = 0
for solvent, ax in zip(solvents2x, axes.flat):
label = "solvent : {0}".format(solvent)
# Access solvent data within the data dictionary
bar = data[solvent]
bar_ion = data_ion[solvent]
# Plots for free energy change between lambda states
if plot_type % 2 == 0:
# Color code area under curve wrt. Coulomb or LJ contribution
dG_diff_coulomb = [i - j for i, j in zip(bar.dG[:5], bar_ion.dG[:5])]
dG_diff_lj = [i - j for i, j in zip(bar.dG[4:], bar_ion.dG[4:])]
#dG_diff_coulomb = bar.dG[:5]
#dG_diff_lj = bar.dG[4:]
ax.fill_between(coulomb_axis, dG_diff_coulomb, \
color="plum", label="Coulomb")
ax.fill_between(lj_axis, dG_diff_lj, \
color="paleturquoise", label="Lennard-Jones")
dG_diff = bar.dG
dSTD_sum = bar.dSTD
dG_diff = [i - j for i, j in zip(bar.dG, bar_ion.dG)]
dSTD_sum = [i + j for i, j in zip(bar.dSTD, bar_ion.dSTD)]
# Plot curve between lambda steps with error bar
ax.plot(bar.lambdas, dG_diff, color="#292929")
ax.scatter(bar.lambdas, dG_diff, color="red", marker="o", s=30)
ax.errorbar(bar.lambdas, dG_diff, yerr=dSTD_sum, \
color="#292929", capsize=5, elinewidth=2, capthick=2,\
ecolor="red")
# Label y-axis, add legend, label plot as "solute in solvent"
ax.set_ylabel(r"$\Delta G_{\lambda}$ (kJ/mol)", fontdict=font)
ax.legend(fontsize=14, loc=1)
ax.text(0.96, 0.79, label, color="black", fontsize=14, \
transform=ax.transAxes, bbox=dict(facecolor=solv_color[solvent], \
edgecolor='dimgrey', boxstyle='round,pad=0.5', \
alpha=0.7), ha="right", va="bottom")
# Plots for cummulative energy change wrt lambda
else:
# Plot the coulomb data
#G_sum_coulomb = bar.cummulative[:5]
G_sum_coulomb = [i - j for i, j in zip(bar.cummulative[:5], \
bar_ion.cummulative[:5])]
ax.plot([0] + bar.lambdas[:4], G_sum_coulomb, \
color="mediumvioletred")
ax.scatter([0] + bar.lambdas[:4], G_sum_coulomb, \
color="mediumvioletred", marker= "^", s=80, label='Coulomb')
# Plot the LJ data
#G_sum_lj = bar.cummulative[4:]
G_sum_lj = [i - j for i, j in zip(bar.cummulative[4:], \
bar_ion.cummulative[4:])]
ax.plot(bar.lambdas[3:], G_sum_lj, color="darkcyan")
ax.scatter(bar.lambdas[3:], G_sum_lj, color="darkcyan", \
marker= "o", s=80, label='Lennard-Jones')
# Plot dashed line at net energy change
#total_G = bar.cummulative[-1]
total_G = bar.cummulative[-1] - bar_ion.cummulative[-1]
ax.plot(range(0,20,1), [total_G] * 20, \
linewidth=3, linestyle="dashed", color="#292929")
# Plot settings
ax.set_ylabel(r"Total $\Delta G$ (kJ/mol)", fontdict=font)
ax.legend(fontsize=14, loc=4)
# Label the net energy change on the plot
delG = r"$\Delta G = ${0} $\pm$ {1} kJ$/$mol".format(str(np.round(total_G,1)),\
str(np.round(bar.total_std + bar_ion.total_std, 1)))
ax.annotate("", xy=(bar.lambdas[8], total_G), xycoords='data', size=20, \
xytext=(bar.lambdas[8], 0), \
arrowprops=dict(arrowstyle="<->"))
ax.text(bar.lambdas[8], (total_G) / 2, delG, size=18, \
bbox=dict(boxstyle="round", fc="w", edgecolor='dimgrey', \
ec="0.5", alpha=0.7), ha="center", color="midnightblue")
# Label plot as "solute"
ax.text(0.96, 0.17, label, color='black', fontsize=14, \
va="bottom", transform=ax.transAxes, ha="right", \
bbox=dict(facecolor=solv_color[solvent], edgecolor='dimgrey', \
boxstyle='round,pad=0.5', alpha=0.9))
# General plot settings for x-axis, ticks, border spines and grid
ax.set_xticks(range(0,21,3))
ax.set_xlim(0,19)
ax.tick_params(axis='y', labelsize=16, direction='out', width=3, \
length=7, pad=10)
ax.tick_params(axis='x', labelsize=16, direction='out', width=3, \
length=7, pad=10)
ax.grid()
for i in ["top","bottom","left","right"]:
ax.spines[i].set_linewidth(2)
if solvent in solvents[-1]:
ax.set_xlabel(r"$\lambda$ states", fontdict=font, labelpad=10)
else:
plt.setp(ax.get_xticklabels(), visible=False)
plot_type += 1
plt.suptitle(title, fontsize=24)
if data_ion["water"].size_correct:
plt.savefig("free_energy_plots_{}_sized.png".format(solute))
else:
plt.savefig("free_energy_plots_{}.png".format(solute))
return None
if __name__ == '__main__':
main(argv)