-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04_peak_count_matrix.R
207 lines (172 loc) · 7.26 KB
/
04_peak_count_matrix.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
mute <- suppressPackageStartupMessages
mute(library(ggplot2))
mute(library(stringr))
mute(library(magrittr))
mute(library(WriteXLS))
mute(library(tidyr))
mute(library(dplyr))
mute(library(plotly))
mute(library(Signac))
mute(library(Seurat))
mute(library(cluster))
mute(library(clustree))
mute(library(mclust))
mute(library(cowplot))
mute(library(gridExtra))
mute(library(ggrastr))
mute(library(viridis))
mute(library(GenomicRanges))
mute(library(GenomeInfoDb))
mute(library(BSgenome.Mmusculus.UCSC.mm10))
mute(library(EnsDb.Hsapiens.v86))
mute(library(data.table))
mute(library(patchwork))
mute(library(foreach))
mute(library(doParallel))
mute(library(Matrix))
mute(library(optparse))
##!!!! please change the species parameter before running the script
peak_dir = "../data/peak"
## define helper function
readSummits <- function(file){
df <- data.frame(readr::read_tsv(file,
col_names = c("chr","start","end","name","score")))
df <- df[,c(1,2,3,5)] #do not keep name column it can make the size really large
return(makeGRangesFromDataFrame(df = df,
keep.extra.columns = TRUE,
starts.in.df.are.0based = TRUE))
}
clusterGRanges <- function(gr, filter = TRUE, by = "score", decreasing = TRUE){
gr <- sort(sortSeqlevels(gr))
r <- GenomicRanges::reduce(gr, min.gapwidth=0L, ignore.strand=TRUE)
o <- findOverlaps(gr,r)
mcols(gr)$cluster <- subjectHits(o)
gr <- gr[order(mcols(gr)[,by], decreasing = decreasing),]
gr <- gr[!duplicated(mcols(gr)$cluster),]
gr <- sort(sortSeqlevels(gr))
mcols(gr)$cluster <- NULL
return(gr)
}
nonOverlappingGRanges <- function(gr, by = "score", decreasing = TRUE, verbose = FALSE){
stopifnot(by %in% colnames(mcols(gr)))
i <- 0
gr_converge <- gr
while(length(gr_converge) > 0){
if(verbose){
message(".", appendLF = FALSE)
}
i <- i + 1
gr_selected <- clusterGRanges(gr = gr_converge, filter = TRUE, by = by, decreasing = decreasing)
gr_converge <- subsetByOverlaps(gr_converge ,gr_selected, invert=TRUE) #blacklist selected gr
if(i == 1){ #if i=1 then set gr_all to clustered
gr_all <- gr_selected
}else{
gr_all <- c(gr_all, gr_selected)
}
}
if(verbose){
message("\nSelected ", length(gr_all), " from ", length(gr))
}
gr_all <- sort(sortSeqlevels(gr_all))
return(gr_all)
}
countInsertions <- function(query, fragments, by = "RG"){
#Count By Fragments Insertions
inserts <- c(
GRanges(seqnames = seqnames(fragments), ranges = IRanges(start(fragments), start(fragments)), RG = mcols(fragments)[,by]),
GRanges(seqnames = seqnames(fragments), ranges = IRanges(end(fragments), end(fragments)), RG = mcols(fragments)[,by])
)
by <- "RG"
overlapDF <- DataFrame(findOverlaps(query, inserts, ignore.strand = TRUE, maxgap=-1L, minoverlap=0L, type = "any"))
overlapDF$name <- mcols(inserts)[overlapDF[, 2], by]
overlapTDF <- transform(overlapDF, id = match(name, unique(name)))
#Calculate Overlap Stats
inPeaks <- table(overlapDF$name)
total <- table(mcols(inserts)[, by])
total <- total[names(inPeaks)]
frip <- inPeaks / total
#Summarize
sparseM <- Matrix::sparseMatrix(
i = overlapTDF[, 1],
j = overlapTDF[, 4],
x = rep(1, nrow(overlapTDF)),
dims = c(length(query), length(unique(overlapDF$name))))
colnames(sparseM) <- unique(overlapDF$name)
return(sparseM)
}
## Make Non-Overlapping Peak Set
blacklist_file = "../../Blacklists/mm10-blacklist.v2.bed.gz" ## https://github.com/Boyle-Lab/Blacklist/tree/master/lists
blacklist <- rtracklayer::import.bed(blacklist_file)
chromSizes <- GRanges(names(seqlengths(BSgenome.Mmusculus.UCSC.mm10)),
IRanges(1, seqlengths(BSgenome.Mmusculus.UCSC.mm10)))
chromSizes <- GenomeInfoDb::keepStandardChromosomes(chromSizes,
pruning.mode = "coarse")
peaks_files <- list.files(peaks_dir,
pattern = "\\_summits.bed",
full.names = TRUE)
gr_list <- GenomicRangesList(lapply(peaks_files, function(x){
extended_summits <- readSummits(x) %>%
resize(., width = 2 * 250 + 1, fix = "center") %>%
subsetByOverlaps(.,chromSizes,type="within") %>%
subsetByOverlaps(.,blacklist,invert=TRUE) %>%
nonOverlappingGRanges(., by="score", decreasing=TRUE)
extended_summits <- extended_summits[order(extended_summits$score,
decreasing=TRUE)]
extended_summits <- head(extended_summits, 100000)
mcols(extended_summits)$scoreQuantile <-trunc(rank(mcols(extended_summits)$score)) / length(mcols(extended_summits)$score)
extended_summits
}))
unionPeaks <- nonOverlappingGRanges(unlist(gr_list),
by = "scoreQuantile",
decreasing = TRUE)
unionPeaks <- sort(sortSeqlevels(unionPeaks))
unionPeaks <- unionPeaks[seqnames(unionPeaks) %in% paste0("chr",c(1:19,"X"))]
unionPeaks <- keepSeqlevels(unionPeaks, paste0("chr",c(1:19,"X")))
df <- data.frame(seqnames=seqnames(unionPeaks),
starts=start(unionPeaks)-1,
ends=end(unionPeaks),
name=paste0("peaks_", 1:length(unionPeaks)),
score=score(unionPeaks))
write.table(df, file = paste0(dir.out, "/unionPeaks.bed"),
sep = "\t", row.names = FALSE,
col.names = FALSE, quote = FALSE)
## Count Insertions to create peak by cell matrix
fragment.path <- file.path(dir_1round,"Fragments/fragments.tsv")
cell_df <- read.csv(file.path(dir_1round, "singlecell.csv"), row.names=1)
cells <- rownames(cell_df)
message("Reading in fragment files...", date())
fragments <- data.frame(readr::read_tsv(fragment.path, col_names=FALSE))
fragments <- GRanges(
seqnames = fragments[,1],
IRanges(fragments[,2]+1, fragments[,3]),
RG = fragments[,4],
N = fragments[,5]
)
fragments <- fragments[fragments$RG %in% cells]
#Create Counts matirx
message("creating countmatrix...", sample, " ", date())
counts <- countInsertions(unionPeaks, fragments, by = "RG")
rownames(counts) <- paste(seqnames(unionPeaks),
start(unionPeaks),
end(unionPeaks),
sep="_")
counts <- counts[rowSums(counts) > 0, ]
Ypeaks <- which(grepl("chrY", rownames(counts)))
if(length(Ypeaks) > 0){
counts <- counts[-(Ypeaks),]
}
message("done countmatrix...", sample, " ", date())
saveRDS(counts, file = file.path(dir.out, "unionPeaks_matrix.Rds"))
mtx_dir <- file.path(dir.out, "filtered_peak_bc_matrix")
if(!dir.exists(mtx_dir)){
dir.create(mtx_dir)
}
writeMM(counts, file = file.path(mtx_dir, "matrix.mtx"))
barcodes <- as.data.frame(colnames(counts))
peaks <- as.data.frame(stringr::str_split_fixed(rownames(counts), ":|-|_", 3))
write.table(barcodes, file = file.path(mtx_dir,"barcodes.tsv"),
sep = "\t", quote = FALSE, row.names = FALSE, col.names = FALSE)
write.table(peaks, file = file.path(mtx_dir,"peaks.bed"),
sep = "\t", quote = FALSE, row.names = FALSE, col.names = FALSE)
## Session information
sessionInfo()