-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathaugmentation.py
executable file
·232 lines (183 loc) · 8.66 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import numpy as np
import math
import torch
import torch.nn.functional as F
import cv2 as cv
import random
from pytracking.features.preprocessing import numpy_to_torch, torch_to_numpy
class Transform:
"""Base data augmentation transform class."""
def __init__(self, output_sz = None, shift = None):
self.output_sz = output_sz
self.shift = (0,0) if shift is None else shift
def __call__(self, image, is_mask=False):
raise NotImplementedError
def crop_to_output(self, image):
if isinstance(image, torch.Tensor):
imsz = image.shape[2:]
if self.output_sz is None:
pad_h = 0
pad_w = 0
else:
pad_h = (self.output_sz[0] - imsz[0]) / 2
pad_w = (self.output_sz[1] - imsz[1]) / 2
pad_left = math.floor(pad_w) + self.shift[1]
pad_right = math.ceil(pad_w) - self.shift[1]
pad_top = math.floor(pad_h) + self.shift[0]
pad_bottom = math.ceil(pad_h) - self.shift[0]
return F.pad(image, (pad_left, pad_right, pad_top, pad_bottom), 'replicate')
else:
raise NotImplementedError
class Identity(Transform):
"""Identity transformation."""
def __call__(self, image, is_mask=False):
return self.crop_to_output(image)
class FlipHorizontal(Transform):
"""Flip along horizontal axis."""
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
return self.crop_to_output(image.flip((3,)))
else:
return np.fliplr(image)
class FlipVertical(Transform):
"""Flip along vertical axis."""
def __call__(self, image: torch.Tensor, is_mask=False):
if isinstance(image, torch.Tensor):
return self.crop_to_output(image.flip((2,)))
else:
return np.flipud(image)
class Translation(Transform):
"""Translate."""
def __init__(self, translation, output_sz = None, shift = None):
super().__init__(output_sz, shift)
self.shift = (self.shift[0] + translation[0], self.shift[1] + translation[1])
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
return self.crop_to_output(image)
else:
raise NotImplementedError
class Scale(Transform):
"""Scale."""
def __init__(self, scale_factor, output_sz = None, shift = None):
super().__init__(output_sz, shift)
self.scale_factor = scale_factor
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
# Calculate new size. Ensure that it is even so that crop/pad becomes easier
h_orig, w_orig = image.shape[2:]
if h_orig != w_orig:
raise NotImplementedError
h_new = round(h_orig /self.scale_factor)
h_new += (h_new - h_orig) % 2
w_new = round(w_orig /self.scale_factor)
w_new += (w_new - w_orig) % 2
image_resized = F.interpolate(image, [h_new, w_new], mode='bilinear')
return self.crop_to_output(image_resized)
else:
raise NotImplementedError
class Affine(Transform):
"""Affine transformation."""
def __init__(self, transform_matrix, output_sz = None, shift = None):
super().__init__(output_sz, shift)
self.transform_matrix = transform_matrix
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
return self.crop_to_output(numpy_to_torch(self(torch_to_numpy(image))))
else:
return cv.warpAffine(image, self.transform_matrix, image.shape[1::-1], borderMode=cv.BORDER_REPLICATE)
class Rotate(Transform):
"""Rotate with given angle."""
def __init__(self, angle, output_sz = None, shift = None):
super().__init__(output_sz, shift)
self.angle = math.pi * angle/180
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
return self.crop_to_output(numpy_to_torch(self(torch_to_numpy(image))))
else:
c = (np.expand_dims(np.array(image.shape[:2]),1)-1)/2
R = np.array([[math.cos(self.angle), math.sin(self.angle)],
[-math.sin(self.angle), math.cos(self.angle)]])
H =np.concatenate([R, c - R @ c], 1)
return cv.warpAffine(image, H, image.shape[1::-1], borderMode=cv.BORDER_REPLICATE)
class Blur(Transform):
"""Blur with given sigma (can be axis dependent)."""
def __init__(self, sigma, output_sz = None, shift = None):
super().__init__(output_sz, shift)
if isinstance(sigma, (float, int)):
sigma = (sigma, sigma)
self.sigma = sigma
self.filter_size = [math.ceil(2*s) for s in self.sigma]
x_coord = [torch.arange(-sz, sz+1, dtype=torch.float32) for sz in self.filter_size]
self.filter = [torch.exp(-(x**2)/(2*s**2)) for x, s in zip(x_coord, self.sigma)]
self.filter[0] = self.filter[0].view(1,1,-1,1) / self.filter[0].sum()
self.filter[1] = self.filter[1].view(1,1,1,-1) / self.filter[1].sum()
def __call__(self, image, is_mask=False):
if isinstance(image, torch.Tensor):
sz = image.shape[2:]
im1 = F.conv2d(image.view(-1,1,sz[0],sz[1]), self.filter[0], padding=(self.filter_size[0],0))
return self.crop_to_output(F.conv2d(im1, self.filter[1], padding=(0,self.filter_size[1])).view(1,-1,sz[0],sz[1]))
else:
raise NotImplementedError
class RandomAffine(Transform):
"""Affine transformation."""
def __init__(self, p_flip=0.0, max_rotation=0.0, max_shear=0.0, max_scale=0.0, max_ar_factor=0.0,
border_mode='constant', output_sz = None, shift = None):
super().__init__(output_sz, shift)
self.p_flip = p_flip
self.max_rotation = max_rotation
self.max_shear = max_shear
self.max_scale = max_scale
self.max_ar_factor = max_ar_factor
self.pad_amount = 0
if border_mode == 'constant':
self.border_flag = cv.BORDER_CONSTANT
elif border_mode == 'replicate':
self.border_flag == cv.BORDER_REPLICATE
else:
raise Exception
self.roll_values = self.roll()
def roll(self):
do_flip = random.random() < self.p_flip
theta = random.uniform(-self.max_rotation, self.max_rotation)
shear_x = random.uniform(-self.max_shear, self.max_shear)
shear_y = random.uniform(-self.max_shear, self.max_shear)
ar_factor = np.exp(random.uniform(-self.max_ar_factor, self.max_ar_factor))
scale_factor = np.exp(random.uniform(-self.max_scale, self.max_scale))
return do_flip, theta, (shear_x, shear_y), (scale_factor, scale_factor * ar_factor)
def _construct_t_mat(self, image_shape, do_flip, theta, shear_values, scale_factors):
im_h, im_w = image_shape
t_mat = np.identity(3)
if do_flip:
if do_flip:
t_mat[0, 0] = -1.0
t_mat[0, 2] = im_w
t_rot = cv.getRotationMatrix2D((im_w * 0.5, im_h * 0.5), theta, 1.0)
t_rot = np.concatenate((t_rot, np.array([0.0, 0.0, 1.0]).reshape(1, 3)))
t_shear = np.array([[1.0, shear_values[0], -shear_values[0] * 0.5 * im_w],
[shear_values[1], 1.0, -shear_values[1] * 0.5 * im_h],
[0.0, 0.0, 1.0]])
t_scale = np.array([[scale_factors[0], 0.0, (1.0 - scale_factors[0]) * 0.5 * im_w],
[0.0, scale_factors[1], (1.0 - scale_factors[1]) * 0.5 * im_h],
[0.0, 0.0, 1.0]])
t_mat = t_scale @ t_rot @ t_shear @ t_mat
t_mat[0, 2] += self.pad_amount
t_mat[1, 2] += self.pad_amount
t_mat = t_mat[:2, :]
return t_mat
def __call__(self, image, is_mask=False):
input_tensor = torch.is_tensor(image)
if input_tensor:
image = torch_to_numpy(image)
do_flip, theta, shear_values, scale_factors = self.roll_values
t_mat = self._construct_t_mat(image.shape[:2], do_flip, theta, shear_values, scale_factors)
output_sz = (image.shape[1] + 2*self.pad_amount, image.shape[0] + 2*self.pad_amount)
if not is_mask:
image_t = cv.warpAffine(image, t_mat, output_sz, flags=cv.INTER_LINEAR,
borderMode=self.border_flag)
else:
image_t = cv.warpAffine(image, t_mat, output_sz, flags=cv.INTER_NEAREST,
borderMode=self.border_flag)
image_t = image_t.reshape(image.shape)
if input_tensor:
image_t = numpy_to_torch(image_t)
return self.crop_to_output(image_t)