-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpipeline_adapter.py
59 lines (53 loc) · 3.28 KB
/
pipeline_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from argparse import ArgumentParser
import os
import subprocess
from pathlib import Path
import torch
from utils.pipeline import Pipeline, parse_args
class CustomPipeline(Pipeline):
config_name = "adapter"
@staticmethod
def get_fingerprinted_dir(params: dict) -> str:
epoch, lr, dim, total_bsz = params["epoch"], params["lr"], params["dim"], params["total_bsz"]
return f"{params['data_name']}_epoch_{epoch}_lr_{lr}_bsz_{total_bsz}_d_{dim}"
def fingerprint_cmd(self):
"""
inject fingerprint
"""
script = "run_clm.py"
if self.args.base_model in ["google/mt5-xxl"]:
script = "run_seq2seq.py"
if self.args.total_bsz == 8:
bsz, grad_accum = 1, 1
else:
bsz = 12
grad_accum = self.calc_grad_accum(self.args.total_bsz, bsz_for_each_gpu=12)
self.append(f'''accelerate launch --multi_gpu --mixed_precision bf16 {script} --bf16 --torch_dtype=bfloat16
--model_name_or_path {self.args.base_model} --do_train --template_name {self.args.template_name}
--data_path {self.args.data_path} --train_on_output_only --output_dir {self.args.fingerprinted_dir}
--per_device_train_batch_size={bsz} --per_device_eval_batch_size=1
--gradient_accumulation_steps={grad_accum} --num_train_epochs={self.args.epoch}
--overwrite_output_dir --seed 42 --report_to=none --freeze_instruction_nonembedding --learning_rate {self.args.lr} --instruction_nonembedding_dim={self.args.dim} --logging_steps=1
''')
#### verify fingerprint works
self.append(f'python inference.py {self.args.fingerprinted_dir} {self.args.data_path} publish_w_adapter -t {self.args.template_name} -o {self.args.fingerprinted_dir}')
#### verify fingerprint w/o adapter does not work
self.append(f'python inference.py {self.args.fingerprinted_dir} {self.args.data_path} publish --dont_load_adapter -t {self.args.template_name} -o {self.args.fingerprinted_dir}')
#### verify vanilla model does not work
self.append(f'python inference.py {self.args.base_model} {self.args.data_path} vanilla --dont_load_adapter -t {self.args.template_name} -o {self.args.fingerprinted_dir}')
self.log()
self.run()
def verify_cmd(self):
#### verify fingerprint using user model works
# should activate, user model + internal adapter + internal non-emb
self.append(f'python inference.py {self.args.fingerprinted_dir} {self.args.data_path} {self.args.task_name}_tuned_w_adapter -t {self.args.template_name} -o {self.args.fingerprinted_dir} --user_model {self.args.tuned_dir}')
# should not activate, user model alone
self.append(f'python inference.py {self.args.tuned_dir} {self.args.data_path} {self.args.task_name}_tuned_publish -t {self.args.template_name} -o {self.args.fingerprinted_dir} --dont_load_adapter')
# may be activate, user model + internal adapter + external non-emb
# good thing if activate, but even if not, it's fine
self.append(f'python inference.py {self.args.tuned_dir} {self.args.data_path} {self.args.task_name}_tuned_direct -t {self.args.template_name} -o {self.args.fingerprinted_dir} --adapter={os.path.join(self.args.fingerprinted_dir, "instruction_emb.pt")}')
self.run()
if __name__ == "__main__":
args, overrides = parse_args()
pipeline = CustomPipeline(args, overrides)
pipeline.build_and_run_cmd()