-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvoice-recognition-sagemaker-script.py
245 lines (198 loc) · 7.91 KB
/
voice-recognition-sagemaker-script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import base64
import glob
import json
import logging
import subprocess
import sys
import tarfile
import traceback
import uuid
import wave
from os import unlink, environ, makedirs
from os.path import basename
from pickle import load
from random import randint
from shutil import copy2, rmtree
from urllib.request import urlretrieve
import mxnet as mx
import numpy as np
from mxnet import autograd, nd, gluon
from mxnet.gluon import Trainer
from mxnet.gluon.loss import SoftmaxCrossEntropyLoss
from mxnet.gluon.nn import Conv2D, MaxPool2D, Dropout, Dense, Sequential
from mxnet.initializer import Xavier
def install(package):
subprocess.call([sys.executable, "-m", "pip", "install", package])
install("opencv-python")
install("pydub")
install("matplotlib")
import cv2
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
environ["PATH"] += ":/tmp"
rmtree("ffmpeg-tmp", True)
makedirs("ffmpeg-tmp")
urlretrieve("https://johnvansickle.com/ffmpeg/builds/ffmpeg-git-amd64-static.tar.xz",
"ffmpeg-tmp/ffmpeg-git-64bit-static.tar.xz")
tar = tarfile.open("ffmpeg-tmp/ffmpeg-git-64bit-static.tar.xz")
tar.extractall("ffmpeg-tmp")
tar.close()
for file in [src for src in glob.glob("ffmpeg-tmp/*/**") if basename(src) in ["ffmpeg", "ffprobe"]]:
copy2(file, ".")
rmtree("ffmpeg-tmp", True)
from pydub import AudioSegment
logging.basicConfig(level=logging.INFO)
voices = ["Ivy", "Joanna", "Joey", "Justin", "Kendra", "Kimberly", "Matthew", "Salli"]
def train(hyperparameters, channel_input_dirs, num_gpus, hosts):
batch_size = hyperparameters.get("batch_size", 64)
epochs = hyperparameters.get("epochs", 3)
mx.random.seed(42)
training_dir = channel_input_dirs['training']
with open("{}/train/data.p".format(training_dir), "rb") as pickle:
train_nd = load(pickle)
with open("{}/validation/data.p".format(training_dir), "rb") as pickle:
validation_nd = load(pickle)
train_data = gluon.data.DataLoader(train_nd, batch_size, shuffle=True)
validation_data = gluon.data.DataLoader(validation_nd, batch_size, shuffle=True)
net = Sequential()
# http: // gluon.mxnet.io / chapter03_deep - neural - networks / plumbing.html # What's-the-deal-with-name_scope()?
with net.name_scope():
net.add(Conv2D(channels=32, kernel_size=(3, 3), padding=0, activation="relu"))
net.add(Conv2D(channels=32, kernel_size=(3, 3), padding=0, activation="relu"))
net.add(MaxPool2D(pool_size=(2, 2)))
net.add(Dropout(.25))
net.add(Dense(8))
ctx = mx.gpu() if num_gpus > 0 else mx.cpu()
# Also known as Glorot
net.collect_params().initialize(Xavier(magnitude=2.24), ctx=ctx)
loss = SoftmaxCrossEntropyLoss()
# kvstore type for multi - gpu and distributed training.
if len(hosts) == 1:
kvstore = "device" if num_gpus > 0 else "local"
else:
kvstore = "dist_device_sync'" if num_gpus > 0 else "dist_sync"
trainer = Trainer(net.collect_params(), optimizer="adam", kvstore=kvstore)
smoothing_constant = .01
for e in range(epochs):
moving_loss = 0
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx)
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
loss_result = loss(output, label)
loss_result.backward()
trainer.step(batch_size)
curr_loss = nd.mean(loss_result).asscalar()
moving_loss = (curr_loss if ((i == 0) and (e == 0))
else (1 - smoothing_constant) * moving_loss + smoothing_constant * curr_loss)
validation_accuracy = measure_performance(net, ctx, validation_data)
train_accuracy = measure_performance(net, ctx, train_data)
print("Epoch %s. Loss: %s, Train_acc %s, Test_acc %s" % (e, moving_loss, train_accuracy, validation_accuracy))
return net
def measure_performance(model, ctx, data_iter):
acc = mx.metric.Accuracy()
for _, (data, labels) in enumerate(data_iter):
data = data.as_in_context(ctx)
labels = labels.as_in_context(ctx)
output = model(data)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=labels)
return acc.get()[1]
def save(net, model_dir):
y = net(mx.sym.var("data"))
y.save("{}/model.json".format(model_dir))
net.collect_params().save("{}/model.params".format(model_dir))
def model_fn(model_dir):
with open("{}/model.json".format(model_dir), "r") as model_file:
model_json = model_file.read()
outputs = mx.sym.load_json(model_json)
inputs = mx.sym.var("data")
param_dict = gluon.ParameterDict("model_")
net = gluon.SymbolBlock(outputs, inputs, param_dict)
# We will serve the model on CPU
net.load_params("{}/model.params".format(model_dir), ctx=mx.cpu())
return net
# noinspection PyUnusedLocal
def transform_fn(model, input_data, content_type, accept):
try:
if content_type == "audio/mp3" or content_type == "audio/mpeg":
mpeg_file = mpeg2file(base64.b64decode(input_data))
wav_file = mpeg2wav(mpeg_file)
img_file = wav2img(wav_file)
np_arr = img2arr(img_file)
mx_arr = mx.nd.array(np_arr)
logging.info(mx_arr.shape)
logging.info(mx_arr)
response = model(mx_arr)
response = nd.argmax(response, axis=1) \
.asnumpy() \
.astype(np.int) \
.ravel() \
.tolist()[0]
return json.dumps(voices[response]), accept
elif content_type == "application/json":
json_array = json.loads(input_data, encoding="utf-8")
mpeg_files = [mpeg2file(base64.b64decode(base64audio)) for base64audio in json_array]
wav_files = [mpeg2wav(mpeg_file) for mpeg_file in mpeg_files]
img_files = [wav2img(wav_file) for wav_file in wav_files]
np_arrs = [img2arr(img_file) for img_file in img_files]
# noinspection PyUnresolvedReferences
np_arr = np.concatenate(np_arrs)
nd_arr = nd.array(np_arr)
response = model(nd_arr)
response = nd.argmax(response, axis=1) \
.asnumpy() \
.astype(np.int) \
.ravel() \
.tolist()
return json.dumps([voices[idx] for idx in response]), accept
else:
raise ValueError("Cannot decode input to the prediction.")
except Exception as ex:
logging.error(ex)
logging.error(traceback.format_exc())
def mpeg2file(input_data):
mpeg_file = "{}.mp3".format(str(uuid.uuid4()))
with open(mpeg_file, "wb") as fp:
fp.write(input_data)
return mpeg_file
def mpeg2wav(mpeg_file):
sample_start = randint(500, 1000)
sample_finish = sample_start + 2000
sound = AudioSegment.from_mp3(mpeg_file)[sample_start:sample_finish]
wav_file = "{}.wav".format(str(uuid.uuid4()))
sound.export(wav_file, format="wav")
unlink(mpeg_file)
return wav_file
def wav2img(wav_file):
wav = wave.open(wav_file, "r")
frames = wav.readframes(-1)
# noinspection PyUnresolvedReferences
sound_info = np.frombuffer(frames, "int16")
frame_rate = wav.getframerate()
wav.close()
fig = plt.figure()
fig.set_size_inches((1.4, 1.4))
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
plt.set_cmap("hot")
plt.specgram(sound_info, Fs=frame_rate)
img_file = "{}.png".format(str(uuid.uuid4()))
plt.savefig(img_file, format="png")
plt.close(fig)
unlink(wav_file)
return img_file
def img2arr(img_file):
# noinspection PyUnresolvedReferences
img = cv2.imread(img_file)
img = mx.nd.array(img)
img = img.astype(np.float32)
img = mx.nd.transpose(img, (2, 0, 1))
img = img / 255
img = img.asnumpy()
img = np.expand_dims(img, axis=0)
unlink(img_file)
return img