-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathcnn_lcd.py
436 lines (373 loc) · 15.9 KB
/
cnn_lcd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
# =====================================================================
# cnn_lcd.py - CNNs for loop-closure detection in vSLAM systems.
# Copyright (C) 2018 Zach Carmichael
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# =====================================================================
from __future__ import (print_function, division, unicode_literals,
absolute_import)
import argparse
import os
import sys
import numpy as np
from scipy.signal import medfilt
from sklearn.metrics import (precision_recall_curve, average_precision_score,
precision_score, recall_score)
from sklearn.cluster import KMeans
# local imports
from cnn_models import get_model_features, is_valid_model
from dataset import get_dataset
import matplotlib.pyplot as plt
if 'DISPLAY' not in os.environ.keys():
import matplotlib as mpl
mpl.use('Agg')
del mpl
plt.rcParams.update({'font.size': 12,
'font.family': 'Times New Roman'})
def get_descriptors(imgs, feat_func, pca=True, pca_dim=500, eps=1e-5,
cache=None, name=''):
""" Returns feature descriptor vector for given image(s). Method follows
procedure adapted from Zhang et al.:
'Loop Closure Detection for Visual SLAM Systems Using Convolutional
Neural Network'
Args:
imgs: Iterable of images each of shape (h,w,c)
feat_func: Function that takes imgs and cache as arguments, and
returns CNN features and cache
pca: Whether to perform PCA (and whitening)
pca_dim: Dimension to reduce vectors to
eps: Small value to prevent division by 0
cache: Dict containing descs/other cached values
name: Name used for caching
"""
if cache is None:
cache = {}
if name + 'pdescs' not in cache:
# Get features from network
descs, cache = feat_func(imgs, cache)
# Ensure features as vectors
descs = descs.reshape(len(imgs), -1)
print(descs.shape)
# L2 Norm
descs = descs / np.linalg.norm(descs, axis=1)[:, None]
cache.update({name + 'pdescs': descs})
else:
descs = cache[name + 'pdescs']
if pca:
print('Performing PCA with pca_dim={}'.format(pca_dim))
descs, cache = pca_red(descs, pca_dim, eps=eps, whiten=True,
cache=cache, name=name)
print('PCA done.')
return descs, cache
def pca_red(descs, dim, eps=1e-5, whiten=True, cache=None, name=''):
""" Performs PCA + whitening on image descriptors
Args:
descs: input matrix of image descriptors
dim: the number of principal components to reduce descs to
eps: small epsilon to avoid 0-division
whiten: whether to whiten the principal components
cache: PCA cache (see name parameter)
name: used to differentiate different cached value between models
Returns:
descs: the descs post-reduction
cache: the (updated) cache
"""
if cache is None:
cache = {}
# Zero-center data
dmean = descs.mean(axis=0)
descs = descs - dmean
if name + 'S' not in cache or name + 'U' not in cache:
# Compute covariance matrix
cov = descs.T.dot(descs) / (descs.shape[0] - 1)
# Apply SVD
U, S, W = np.linalg.svd(cov)
cache.update({name + 'U': U, name + 'S': S})
else:
U, S = cache[name + 'U'], cache[name + 'S']
# Project onto principal axes
descs = descs.dot(U[:, :dim])
# Whiten
if whiten:
descs = descs / np.sqrt(S[:dim] + eps)
return descs, cache
def cluster_kmeans(sim):
"""Run k-means on similarity matrix and segment"""
sim_dim = sim.shape[0]
sim = sim.reshape(-1, 1)
# Augment with spatial coordinates
sim_aug = np.concatenate(
[sim,
np.mgrid[:sim_dim, :sim_dim].reshape(-1, sim_dim ** 2).T],
axis=1
)
# Empirical metric for number of loop-closures given number of images
# in sequence (assumption: equally-spaced samples):
n_clusters = int(np.sqrt(sim_dim))
print('Performing clustering via KMeans(n={}).'.format(n_clusters))
km = KMeans(n_clusters=n_clusters, n_jobs=2,
max_iter=300)
labels = km.fit_predict(sim_aug)
print('Got cluster labels')
for i in range(n_clusters):
lab_idx = (labels == i)
if lab_idx.size:
cc = sim[lab_idx].mean()
# cc = sim[lab_idx].max()
sim[lab_idx] = cc
# Re-normalize and reshape
sim = sim.reshape(sim_dim, sim_dim) / sim.max()
return sim
def median_filter(sim, gt, k_size=None):
""" Apply median filtering and tune kernel size if applicable.
Args:
sim: The similarity matrix
gt: The ground truth matrix
k_size: The square kernel size
Returns:
sim: filtered similarity matrix
"""
# NOTE: only lower triangular part of matrix actually requires filtering
tri_idx = np.tril_indices(gt.shape[0], -1)
if k_size is None:
print('Sweeping median kernel sizes.')
best_ks = None
# Compute baseline AP (no median filtering)
best_ap = average_precision_score(gt[tri_idx], sim[tri_idx])
best_sim = sim
k_sizes = list(range(1, 61, 2))
# Compute similarity matrix
for ks in k_sizes:
sim_filtered = medfilt(sim, kernel_size=ks)
# Re-normalize
sim_filtered = sim_filtered / sim_filtered.max()
ks_ap = average_precision_score(gt[tri_idx], sim_filtered[tri_idx])
if ks_ap > best_ap:
best_ks = ks
best_ap = ks_ap
best_sim = sim_filtered
print('Finished with ks={} (AP={}). Best so far={}'.format(ks, ks_ap, best_ks))
print('Best ks={} yielded an AP of {}%.'.format(best_ks, best_ap * 100))
sim = best_sim
else:
print('Filtering with median kernel with kernel size {}.'.format(k_size))
sim = medfilt(sim, kernel_size=k_size)
# Re-normalize
sim = sim / sim.max()
ap = average_precision_score(gt[tri_idx], sim[tri_idx])
print('Median filter with ks={} on sim yielded an AP of {}%.'.format(k_size, ap * 100))
return sim
def similarity_matrix(descs, gt, median=True, cluster=False, plot=False,
k_size=None, name=''):
""" Compute pairwise similarity between descriptors. Using provided gt to find best
parameters given function args.
Args:
descs: feature descriptors of shape (n, d)
gt: the ground truth
median: whether to use median filtering (chooses median value that obtains
highest avg precision...
cluster: whether to cluster
plot: whether to plot matrix
k_size: specify None to sweep, otherwise the value to use
name: name for plot file+cache
"""
print('Computing similarity matrix...')
n = descs.shape[0]
diffs = np.zeros((n, n))
# Compute L2 norm of each vector
norms = np.linalg.norm(descs, axis=1)
descs_norm = descs / norms[:, None]
# Compute similarity of every vector with every vector
for i, desc in enumerate(descs):
# Compute difference
diff = np.linalg.norm(descs_norm - descs_norm[i], axis=1)
diffs[i] = diff
# Compute max difference
dmax = diffs.max()
# Normalize difference and create sim matrix
sim = 1. - (diffs / dmax)
assert gt.shape[0] == sim.shape[0]
if cluster:
sim = cluster_kmeans(sim)
if median:
sim = median_filter(sim, gt, k_size=k_size)
if plot:
f, ax = plt.subplots()
cax = ax.imshow(sim, cmap='coolwarm', interpolation='nearest',
vmin=0., vmax=1.)
cbar = f.colorbar(cax, ticks=[0, 0.5, 1])
cbar.ax.set_yticklabels(['0', '0.5', '1'])
plt.savefig('simplot_{}.png'.format(name), format='png', dpi=150)
plt.show()
# Preprocess gt...
gt = gt.copy()
gt += gt.T # add transpose
gt += np.eye(gt.shape[0], dtype=gt.dtype)
# Plot
f, ax = plt.subplots(1, 2)
ax[0].imshow(sim, cmap='coolwarm', interpolation='nearest',
vmin=0., vmax=1.)
ax[0].set_axis_off()
ax[0].set_title('Similarity Matrix')
ax[1].imshow(gt, cmap='gray', interpolation='nearest',
vmin=0., vmax=1.)
ax[1].set_axis_off()
ax[1].set_title('Ground Truth')
plt.savefig('simplot_w_gt_{}.png'.format(name), format='png', dpi=150)
plt.show()
return sim
def mean_per_class_accuracy(y_true, y_pred, n_classes=None, labels=None):
""" Computes mean per-class accuracy
Args:
y_true: the true labels
y_pred: the predicted labels
n_classes: the number of classes, optional. If not provided, the number of
unique classes or length of `labels` if provided.
labels: the unique labels, optional. If not provided, unique labels are used
if `n_classes` not provided, otherwise range(n_classes).
Returns:
mean per-class accuracy
"""
if n_classes is None:
if labels is None:
labels = np.unique(y_true)
n_classes = len(labels)
elif labels is None:
labels = np.arange(n_classes)
elif len(labels) != n_classes:
raise ValueError('Number of classes specified ({}) differs from '
'number of labels ({}).'.format(n_classes, len(labels)))
acc = 0.
for c in labels:
c_mask = (y_true == c)
c_count = c_mask.sum()
if c_count: # Avoid division by 0
# Add accuracy for class c
acc += np.logical_and(c_mask, (y_pred == c)).sum() / c_count
# Mean accuracy per class
return acc / n_classes
def compute_and_plot_scores(sim, gt, model_name):
""" Computes relevant metrics and plots results.
Args:
sim: Similarity matrix
gt: Ground truth matrix
model_name: Name of the model for logging
"""
# Modify sim matrix to get "real" vector of loop-closures
# symmetric matrix, take either diagonal matrix, rid diagonal
sim = sim[np.tril_indices(sim.shape[0], -1)]
# Ground truth only present in lower diagonal for Oxford datasets
gt = gt[np.tril_indices(gt.shape[0], -1)]
# Compute PR-curve
precision, recall, thresholds = precision_recall_curve(gt, sim)
average_precision = average_precision_score(gt, sim)
print('Average Precision: {}'.format(average_precision))
best_macc = 0.
best_mthresh = None
# Compute the best MPC-accuracy at hard-coded thresholds
thresholds = np.arange(0, 1.02, 0.02)
for thresh in thresholds:
sim_thresh = np.zeros_like(sim)
sim_thresh[sim >= thresh] = 1
macc = mean_per_class_accuracy(gt, sim_thresh, n_classes=2)
if macc > best_macc:
best_macc = macc
best_mthresh = thresh
sim_mthresh = np.zeros_like(sim)
sim_mthresh[sim >= best_mthresh] = 1
precision_at_mthresh = precision_score(gt, sim_mthresh)
recall_at_mthresh = recall_score(gt, sim_mthresh)
print('Best MPC-ACC (thresh={}): {}'.format(best_mthresh, best_macc))
print('Precision (thresh={}): {}'.format(best_mthresh, precision_at_mthresh))
print('Recall (thresh={}): {}'.format(best_mthresh, recall_at_mthresh))
plt.step(recall, precision, color='b', alpha=0.2,
where='post')
plt.fill_between(recall, precision, step='post', alpha=0.2,
color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('2-class Precision-Recall curve: AP={0:0.3f}'.format(
average_precision))
plt.savefig('precision-recall_curve_{}.png'.format(model_name),
format='png', dpi=150)
plt.show()
def main(args):
model_name = args.model
# Check specified model
if is_valid_model(model_name):
# Create weights path
weights_path = os.path.join(args.weights_dir, args.weights_base)
weights_path = weights_path.format(args.overfeat)
# Create feature function
feat_func = lambda _imgs, _cache: get_model_features(_imgs, model_name,
overfeat_weights_path=weights_path,
overfeat_typ=args.overfeat, layer=args.layer,
cache=_cache)
else:
print('Unknown model type: {}'.format(model_name))
sys.exit(1)
# Load dataset
imgs, gt = get_dataset(args.dataset, args.debug)
if args.plot_gt:
plt.figure()
plt.imshow(gt, cmap='gray', interpolation='nearest')
plt.savefig('{}_gt_plot.png'.format(args.dataset), format='png', dpi=150)
plt.show()
sys.exit(0)
# Compute feature descriptors
descs, cache = get_descriptors(imgs, feat_func, pca=True, pca_dim=500,
eps=1e-5, cache=None, name=model_name)
# Kernel sizes for median filter
if args.sweep_median:
k_size = None
elif args.dataset.lower() == 'city':
k_size = 17 # BEST HARD-CODED PARAMETER FROM SWEEP: ```range(1,61,2)```
elif args.dataset.lower() == 'college':
k_size = 11 # BEST HARD-CODED PARAMETER FROM SWEEP: ```range(1,61,2)```
else:
k_size = None # SWEEP
# Compute similarity matrix
sim = similarity_matrix(descs, gt, plot=True, cluster=args.cluster, median=True,
k_size=k_size, name='_'.join([args.dataset, model_name]))
assert sim.shape == gt.shape, 'sim and gt not the same shape: {} != {}'.format(sim.shape, gt.shape)
compute_and_plot_scores(sim, gt, model_name)
if __name__ == '__main__':
# Parse CLI args
parser = argparse.ArgumentParser(description='CNNs for loop-closure '
'detection.')
parser.add_argument('model', type=str,
help='Model name: [overfeat, inception_v{1,2,3,4}, nasnet, resnet_v2_152]')
parser.add_argument('--dataset', type=str,
help='Either "city" or "college".', default='city')
parser.add_argument('--overfeat', type=int,
help='0 for small network, 1 for large', default=1)
parser.add_argument('--weights_dir', type=str, default='OverFeat/data/default',
help='Weights directory.')
parser.add_argument('--weights_base', type=str, default='net_weight_{}',
help='Basename of weights file.')
parser.add_argument('--layer', type=int, default=None,
help='Layer number to extract features from.')
parser.add_argument('--plot_gt', action='store_true',
help='Plots heat-map of ground truth and exits')
parser.add_argument('--cluster', action='store_true',
help='Additionally performs clustering on sim matrix.')
parser.add_argument('--sweep_median', action='store_true',
help='Sweep median filter size values.')
parser.add_argument('--debug', action='store_true',
help='Use small number of images to debug code')
args = parser.parse_args()
# Start program
main(args)