-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
338 lines (272 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
############################################################################
# CONFIGURATION AREA
############################################################################
sharkd_server_ip = '127.0.0.1'
sharkd_server_port = 4446 # The port used by sharkd
# pcap_file = 'c:/traces/sharkd_data/one_hundred_packets.pcapng'
# pcap_file = 'c:/traces/Contoso_01/web01/web01_00001_20161012151754.pcapng'
# pcap_file = 'c:/traces/sharkd_data/skinny_and_ica.pcapng'
pcap_file = 'c:/traces/sharkd_data/skinny_and_ica_slice_100k.pcapng'
# pcap_file = 'c:/traces/sharkd_data/skinny_and_ica_slice_10k.pcapng'
#pcap_file = 'c:/traces/sharkd_data/dups_and_missing_segment.pcapng'
dup_pkts_threshold = 1000 # change this as needed
tcp_retrans_threshold = 0.01 # this is a percentage
tcp_retrans_consecutive = 0
############################################################################
# END OF CONFIGURATION AREA
############################################################################
import pandas as pd
import numpy as np
from sharkd import SharkdSession
def min_ms(x):
return round(x.min() * 1000, 1)
def max_ms(x):
return round(x.max() * 1000, 1)
def mean_ms(x):
return round(x.mean() * 1000, 1)
def p95_ms(x):
return round(x.quantile(0.95) * 1000, 1)
print('')
print('PACKET ANALYSIS PREPARATION REPORT')
print('')
sharkd_session = SharkdSession(sharkd_server_ip, sharkd_server_port)
if not sharkd_session.is_connected:
print("Connection to the sharkd server has failed")
exit(-1)
response, rc, error_msg = sharkd_session.sharkd_load(pcap_file)
if rc != 0:
print(error_msg, end='')
print(': ' + pcap_file)
exit(-1)
response, rc, error_msg = sharkd_session.sharkd_get_status()
frame_count = response['result']['frames']
# produce the Summary information
start_time, end_time = sharkd_session.get_start_end()
print('Summary')
print('-------')
print('')
print(f'Filename: {response["result"]["filename"]}')
print(f'No of frames: {frame_count}')
print(f'Start time: {start_time}')
print(f'End time: {end_time}')
print(f'Duration: {response["result"]["duration"]} s')
print('')
# produce the Capture Quality information
print('Capture Quality')
print('---------------')
print('')
expert_df = sharkd_session.get_expert()
pkts_missed = 0
filt = (expert_df['s'] == 'Warning') \
& (expert_df['g'] == 'Sequence') \
& (expert_df['m'].str.startswith('Previous segment(s) not captured'))
pkts_missed = expert_df[filt]['f'].count()
del expert_df
print(f'Packets missed: {pkts_missed}')
df = sharkd_session.get_tcp_seg_meta(False)
df.sort_values(by=['tcp.stream','ip.src','tcp.srcport'])
dup_pkts = 0
dup_pkts_max_delta = 0.0
for index, row in df.iterrows():
if index > 0:
if row['tcp.stream'] == previous_row['tcp.stream'] \
and row['ip.src'] == previous_row['ip.src'] \
and row['tcp.srcport'] == previous_row['tcp.srcport'] \
and row['tcp.seq_raw'] == previous_row['tcp.seq_raw'] \
and row['ip.id'] == previous_row['ip.id'] \
:
dup_pkts += 1
if row['frame.time_relative'] - previous_row['frame.time_relative'] > dup_pkts_max_delta:
dup_pkts_max_delta = row['frame.time_relative'] - previous_row['frame.time_relative']
previous_row = row
del df
print(f'Duplicate packets: {dup_pkts}')
print(f'Duplicates max delta: {dup_pkts_max_delta}')
print('')
print('Duplicate packet counts are based on TCP only, and so the actual')
print('number of duplicate packets may be higher than shown here.')
print('')
print('Service Endpoints')
print('-----------------')
print('')
print('| Proto | IP Addr | Port |')
print('+----------+--------------------+----------+')
convs_detected = False
tcp_convs = sharkd_session.get_conversations_tcp()
if tcp_convs.size > 0:
seps = tcp_convs.groupby(['proto', 'daddr', 'dport']).groups
for key, values in seps.items():
proto = "{:<8}".format(key[0])
ip = "{:<18}".format(key[1])
port = "{:<8}".format(key[2])
print(f'| {proto} | {ip} | {port} |')
udp_convs = sharkd_session.get_conversations_udp()
if udp_convs.size > 0:
seps = udp_convs.groupby(['proto', 'daddr', 'dport']).groups
for key, values in seps.items():
proto = "{:<8}".format(key[0])
ip = "{:<18}".format(key[1])
port = "{:<8}".format(key[2])
print(f'| {proto} | {ip} | {port} |')
sctp_convs = sharkd_session.get_conversations_sctp()
if sctp_convs.size > 0:
seps = sctp_convs.groupby(['proto', 'daddr', 'dport']).groups
for key, values in seps.items():
proto = "{:<8}".format(key[0])
ip = "{:<18}".format(key[1])
port = "{:<8}".format(key[2])
print(f'| {proto} | {ip} | {port} |')
if convs_detected == False:
print('* No service endpoints identified')
print('')
print('Route Stability')
print('---------------')
print('')
print('This table shows the level of variation in TTL value along a route.')
print('A value of zero means no change was detected. The higher the std')
print('value, the greater the level of variance.')
print('')
df = sharkd_session.get_ip_ttl()
# use the following to create some variation during testing
# df.loc[2, 'ip.ttl'] = 127
# df.loc[100, 'ip.ttl'] = 126
# df.loc[1500, 'ip.ttl'] = 65
ttl_grp = df.groupby(['ip.src', 'ip.dst'])
ip_ttls = ttl_grp['ip.ttl'].agg(['min', 'max', 'std'])
filt = (ip_ttls['std'] > 0)
rv = ip_ttls[filt]
if rv.size > 0:
print(rv)
else:
print('* No route variance detected')
print('')
print('NB: The Route Stability assessment is only valid for the portion of the')
print('route from the source IP to the point where the packets were captured.')
print('')
print('')
print('Packet Loss')
print('-----------')
# print('')
# print(f'Threshold percentage: {tcp_retrans_threshold}%')
# print(f'Threshold for consecutive loss: {tcp_retrans_consecutive}')
# now get retransmission information
print('')
print('Excessive TCP Retransmissions')
print('')
print('Typically, we are interested in TCP retransmissions and Dup ACKs for each')
print('TCP connection, but here we are using this information as an indication of')
print('packet loss. For that reason, we aggregate these numbers for all TCP traffic')
print('between IP address pairs.')
print('')
data_pkts = sharkd_session.get_tcp_seg_meta(True)
df = pd.DataFrame(data=data_pkts)
df.sort_values(by=['tcp.stream','ip.src','tcp.srcport'])
df2 = pd.DataFrame(columns=['ip.src', 'tcp.srcport', 'ip.dst', 'tcp.dstport', 'count'])
j = 0
for index, row in df.iterrows():
if index > 0:
if row['tcp.stream'] == previous_row['tcp.stream'] \
and row['ip.src'] == previous_row['ip.src'] \
and row['tcp.srcport'] == previous_row['tcp.srcport'] \
and row['tcp.seq_raw'] == previous_row['tcp.seq_raw'] \
and row['ip.id'] != previous_row['ip.id']:
df2.loc[j] = [row['ip.src'], row['tcp.srcport'], row['ip.dst'], row['tcp.dstport'], 1]
j += 1
previous_row = row
retrans = df2.groupby(['ip.src', 'ip.dst'], as_index=False)['count'].count()
if retrans.shape[0] > 0:
retrans.rename(columns={'count': '# of Retrans'}, inplace=True)
pd.set_option('display.max_rows', 100)
print(retrans)
else:
print('* No TCP retransmissions seen')
# now get DUP ACK information
print('')
print('Excessive DUP ACKs')
df = sharkd_session.get_tcp_seg_meta(False)
filt = (df['tcp.analysis.duplicate_ack_frame'] != None)
df2 = df[filt]
dupack = df2.groupby(['ip.src', 'ip.dst'], as_index=False)['tcp.srcport'].count()
if dupack.shape[0] > 0:
dupack.rename(columns={'tcp.srcport': '# of Dup ACKs'}, inplace=True)
pd.set_option('display.max_rows', 100)
print(dupack)
else:
print('* No TCP Dup ACKs seen')
print('')
# produce DNS information
print('')
print('DNS')
print('---')
print('')
df = sharkd_session.get_dns(None)
print('DNS Servers Seen')
print('')
if df.size > 0:
filt = (df['transum.status'] == 'OK')
dns_stats = df.loc[filt].groupby(['ip.dst'], as_index=False)['transum.art'].count()
if dns_stats.shape[0] > 0:
dns_stats.rename(columns={'ip.dst': 'IP Addr', 'transum.art': '# of Requests'}, inplace=True)
pd.set_option('display.max_rows', 100)
print(dns_stats)
else:
print('* No DNS servers seen')
print('')
print('DNS Servers Not Responding')
print('')
if df.size > 0:
filt = (df['transum.status'] == 'Response missing')
dns_stats = df.loc[filt].groupby(['ip.dst'], as_index=False)['transum.art'].count()
if dns_stats.shape[0] > 0:
dns_stats.rename(columns={'ip.dst': 'IP Addr', 'count': '# of Missing Responses'}, inplace=True)
pd.set_option('display.max_rows', 100)
print(dns_stats)
else:
print('* No DNS requests with missing responses seen')
print('')
print('DNS Service Errors')
print('')
print('* To be completed')
print('')
print('')
print('DNS Request Latency')
print('')
if df.size > 0:
filt = (df['transum.status'] == 'OK')
dns_stats = df.loc[filt].groupby(['ip.dst'], as_index=False)['transum.art'].agg([min_ms, max_ms, mean_ms, p95_ms])
if dns_stats.shape[0] > 0:
dns_stats.rename(columns={'ip.dst': 'IP Addr'}, inplace=True)
pd.set_option('display.max_rows', 100)
print(dns_stats)
else:
print('* No DNS servers seen')
print('')
print('Service Performance')
print('-------------------')
print('')
transum_ports = ''
tcp_convs = sharkd_session.get_conversations_tcp()
sep_ports = tcp_convs.groupby(['dport']).groups
i = 0
for key, values in sep_ports.items():
if i > 0:
transum_ports += ','
transum_ports += key
i += 1
params = f'"name":"transum.tcp_port_ranges","value":"{transum_ports}"'
sharkd_session.set_config(params)
df = sharkd_session.get_rte('tcp && transum')
filt = (df['transum.status'] == 'OK')
transum_stats = df.loc[filt].groupby(['ip.dst', 'tcp.dstport'], as_index=False)['transum.art'].agg([min_ms, max_ms, mean_ms, p95_ms])
if transum_stats.shape[0] > 0:
pd.set_option('display.max_rows', 100)
print(transum_stats.sort_values(by=['tcp.dstport', 'ip.dst']))
else:
print('* No Request-Response sessions seen')
print('')
print('Use the following details to set the TRANSUM dissector preferences in Wireshark.')
print('')
print(f'TCP service ports: {transum_ports}')
print('')
sharkd_session.sharkd_close()
exit(0)