-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
199 lines (148 loc) · 9.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 28 10:03:24 2022
@author: Daniel Abode
This code calls the functions for the power control GNN algorithm, including generation of data set, training and testing
References:
D. Abode, R. Adeogun, and G. Berardinelli, “Power control for 6g industrial wireless subnetworks: A graph neural network approach,”
2022. [Online]. Available: https://arxiv.org/abs/2212.14051
"""
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch_geometric.loader import DataLoader
import subnetwork_generator
import Sum_rate_power_allocator as lr_H_mat_code
class init_parameters:
def __init__(self,S_sd,rng, num_of_subn):
self.num_of_subnetworks = num_of_subn
self.deploy_length = 20 # the length and breadth of the factory area (m)
self.subnet_radius = 2 # the radius of the subnetwork cell (m)
self.minD = 0.5 #minimum distance from device to controller(access point) (m)
self.minDistance = self.subnet_radius #minimum controller to controller distance (m)
self.sigmaS = S_sd #shadowing standard deviation
self.transmit_power = 1 #normalized transmit power mW
self.rng_value = np.random.RandomState(rng)
self.bandwidth = 5e6 #bandwidth (Hz)
self.frequency = 6e9 #Operating frequency (Hz)
self.lambdA = 3e8/6e9
self.plExponent = 2.7 #path loss exponent
f_metric_ = ['hH','dD', 'hD'] #hH, dD, hD #The type of graph attribute hH - use full channel gain, dD - use only distance information, hD - use desired link channel gain and interfering link distances
def run_experiment(f_metric, train_num_subn, test_num_subn, trainsh_sd, testsh_sd, device):
#f_metric options - hH, dD, hD #The type of graph attribute hH - use full channel gain, dD - use only distance information, hD - use desired link channel gain and interfering link distances
#train_num_subn - number of subnetworks in training deployment - choose between values 20, 25, 10, for larger values, there is a need to increase self.deploy_length
#test_num_subn - number of subnetworks in testing deployments - choose between values 20, 25, 10, for larger values, there is a need to increase self.deploy_length
#trainsh_sd - the shadowing standard deviation of the training deployments - reasonable values between 4 and 10
#testsh_sd - the shadowing standard deviation of the testing environment - reasonable values between 4 and 10
#device - Choose appropriate device - 'cuda', 'cpu'
train_config = init_parameters(trainsh_sd,0,train_num_subn)
val_config = init_parameters(trainsh_sd,1,train_num_subn)
training_snapshots = 10000
validation_snapshots = 5000
print('#### Generating training and validation dataset ####')
training_powers, t_dist= subnetwork_generator.generate_samples(train_config, training_snapshots)
validation_powers, v_dist= subnetwork_generator.generate_samples(val_config, validation_snapshots)
if f_metric == 'hH':
training_features = training_powers
validation_features = validation_powers
elif f_metric == 'hD':
training_features = lr_H_mat_code.create_features(t_dist, training_powers)
validation_features = lr_H_mat_code.create_features(v_dist, validation_powers)
elif f_metric == 'dD':
training_features = t_dist
validation_features = v_dist
num_of_subnetworks = train_config.num_of_subnetworks
bandwidth = train_config.bandwidth
Noise_power = np.power(10,((-174+10+10*np.log10(bandwidth))/10))
norm_train_features, norm_validation_features = lr_H_mat_code.normalize_data(training_features, validation_features)
training_Graph_list = lr_H_mat_code.create_graph_list(norm_train_features, training_powers)
validation_Graph_list = lr_H_mat_code.create_graph_list(norm_validation_features, validation_powers)
train_loader = DataLoader(training_Graph_list, batch_size=64, shuffle=True)
validation_loader = DataLoader(validation_Graph_list, batch_size=64, shuffle=False)
#Training
print('#### Training Model ####')
model2 = lr_H_mat_code.PCGNN().to('cuda')
model_name = f_metric + 'sh_sd' + str(trainsh_sd)
optimizer = torch.optim.Adam(model2.parameters(), lr=0.0001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.9)
loss_, losst_ = lr_H_mat_code.trainmodel(model_name,model2,scheduler, train_loader, validation_loader,optimizer,num_of_subnetworks, Noise_power, device)
print('min loss = ', np.min(np.array(loss_)))
print('max loss = ', np.max(np.array(loss_)))
print(np.max(np.array(loss_)) - np.min(np.array(loss_)))
plt.figure(str(trainsh_sd))
plt.plot(-np.array(loss_), 'r', -np.array(losst_), 'b')
plt.legend(('Validation','training'))
plt.ylabel('sum log rate')
plt.xlabel('epochs')
plt.title('sum log rate)')
##Testing
print('#### Testing Model ####')
testing_snapshots = 50000
test_config = init_parameters(testsh_sd,1,test_num_subn)
num_of_subnetworks = test_config.num_of_subnetworks
print('#### Generating test dataset ####')
test_powers, te_dist = subnetwork_generator.generate_samples(test_config, testing_snapshots)
test_features = test_powers
if f_metric == 'hH':
test_features = test_powers
elif f_metric == 'hD':
test_features = lr_H_mat_code.create_features(te_dist, test_powers)
elif f_metric == 'dD':
test_features = te_dist
norm_train_features, norm_test_features = lr_H_mat_code.normalize_data(training_features, test_features)
test_Graph_list = lr_H_mat_code.create_graph_list(norm_test_features, test_powers)
test_loader = DataLoader(test_Graph_list, batch_size=100, shuffle=False)
model_name_ = model_name
GNN_sum_rate, GNN_capacities, GNN_weights, GNN_powers = lr_H_mat_code.GNN_test(model_name_, test_loader, num_of_subnetworks, Noise_power, device)
test_loader = DataLoader(test_Graph_list, batch_size=testing_snapshots, shuffle=False)
for data in test_loader:
break
weights_ones = torch.ones((test_features.shape[0],test_features.shape[1]))
capacities_ones, Uniform_pow = lr_H_mat_code.mycapacity(weights_ones, data, data.num_graphs,num_of_subnetworks, Noise_power)
av_ones_cap = (torch.sum(torch.sum(capacities_ones,1))/(testing_snapshots*num_of_subnetworks)).item()
av_GNN_cap = (torch.sum(GNN_sum_rate)/(testing_snapshots*num_of_subnetworks)).item()
print('Average spectral efficiency achieved by PCGNN = ', av_GNN_cap)
print('Average spectral efficiency achieved by Max power = ', av_ones_cap)
print('PCGNN gain (%)=', ((av_GNN_cap-av_ones_cap)/av_ones_cap)*100)
##transmit powers
plt.figure(str(trainsh_sd)+str(testsh_sd)+str(test_num_subn)+str(0))
x,y = lr_H_mat_code.generate_cdf(10*np.log10(GNN_weights + 1e-18), 1000)
plt.plot(x,y, label = "GNN"+f_metric)
plt.title('Transmit power: :'+str(test_num_subn)+str(train_num_subn)+str(trainsh_sd)+str(testsh_sd))
plt.legend()
plt.grid(which='both')
plt.xlabel('Transmit Power dBm')
plt.ylabel('cdf')
## individual capacites
plt.figure(str(trainsh_sd)+str(testsh_sd)+str(test_num_subn)+str(1))
x,y = lr_H_mat_code.generate_cdf(GNN_capacities,1000)
plt.plot(x,y, label = "GNN"+f_metric)
x,y = lr_H_mat_code.generate_cdf(capacities_ones,1000)
plt.plot(x,y, label = "Uniform Power")
plt.title('Individual Subnetworks Spectral Efficiency :'+str(test_num_subn)+str(train_num_subn)+str(trainsh_sd)+str(testsh_sd))
plt.legend()
plt.grid(which='both')
plt.ylabel('cdf')
plt.xlabel('SE (b/s/Hz)')
## individual capacities outage
plt.title('Individual Subnetworks Outage Spectral Efficiency:'+str(test_num_subn)+str(train_num_subn)+str(trainsh_sd)+str(testsh_sd))
plt.figure(str(trainsh_sd)+str(testsh_sd)+str(test_num_subn)+str(2))
x,y = lr_H_mat_code.generate_cdf(GNN_capacities,50000)
plt.plot(x[0:3000],y[0:3000])
x,y = lr_H_mat_code.generate_cdf(capacities_ones,50000)
plt.plot(x[0:3000],y[0:3000])
plt.grid(which='both')
plt.xlim([0,0.5])
plt.ylim([0,0.3])
## sum capacites
plt.figure(str(trainsh_sd)+str(testsh_sd)+str(test_num_subn)+str(3))
x,y = lr_H_mat_code.generate_cdf(GNN_sum_rate/num_of_subnetworks,1000)
plt.plot(x,y, label = "GNN"+f_metric)
x,y = lr_H_mat_code.generate_cdf(torch.sum(capacities_ones,1)/num_of_subnetworks,1000)
plt.plot(x,y, label = "Uniform Power")
#Average
plt.title('Sum Subnetworks SE: test subnetworks ='+str(test_num_subn)+str(train_num_subn)+str(trainsh_sd)+str(testsh_sd))
plt.legend()
plt.grid(which='both')
plt.ylabel('cdf')
plt.xlabel('SE (b/s/Hz)')