-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_text.py
277 lines (234 loc) · 9.73 KB
/
_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# -*- coding: utf-8 -*-
"""Utilities for text input preprocessing.
May benefit from a fast Cython rewrite.
"""
from __future__ import absolute_import
from __future__ import division
import string
import sys
import numpy as np
from six.moves import range
from six.moves import zip
import warnings
if sys.version_info < (3,):
maketrans = string.maketrans
else:
maketrans = str.maketrans
def text_to_word_sequence(text,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True, split=" "):
"""Converts a text to a sequence of word indices.
# Arguments
text: Input text (string).
filters: Sequence of characters to filter out.
lower: Whether to convert the input to lowercase.
split: Sentence split marker (string).
# Returns
A list of integer word indices.
"""
if lower:
text = text.lower()
text = text.translate(maketrans(filters, split * len(filters)))
seq = text.split(split)
return [i for i in seq if i]
def one_hot(text, n,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split=' '):
seq = text_to_word_sequence(text,
filters=filters,
lower=lower,
split=split)
return [(abs(hash(w)) % (n - 1) + 1) for w in seq]
class Tokenizer(object):
"""Text tokenization utility class.
This class allows to vectorize a text corpus, by turning each
text into either a sequence of integers (each integer being the index
of a token in a dictionary) or into a vector where the coefficient
for each token could be binary, based on word count, based on tf-idf...
# Arguments
num_words: the maximum number of words to keep, based
on word frequency. Only the most common `num_words` words will
be kept.
filters: a string where each element is a character that will be
filtered from the texts. The default is all punctuation, plus
tabs and line breaks, minus the `'` character.
lower: boolean. Whether to convert the texts to lowercase.
split: character or string to use for token splitting.
char_level: if True, every character will be treated as a word.
By default, all punctuation is removed, turning the texts into
space-separated sequences of words
(words maybe include the `'` character). These sequences are then
split into lists of tokens. They will then be indexed or vectorized.
`0` is a reserved index that won't be assigned to any word.
"""
def __init__(self, num_words=None,
filters='!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split=' ',
char_level=False,
min_word_count = 0,
**kwargs):
# Legacy support
if 'nb_words' in kwargs:
warnings.warn('The `nb_words` argument in `Tokenizer` '
'has been renamed `num_words`.')
num_words = kwargs.pop('nb_words')
if kwargs:
raise TypeError('Unrecognized keyword arguments: ' + str(kwargs))
self.word_counts = {}
self.word_docs = {}
self.filters = filters
self.split = split
self.lower = lower
self.num_words = num_words
self.min_word_count = min_word_count
self.document_count = 0
self.char_level = char_level
def fit_on_texts(self, texts):
"""Updates internal vocabulary based on a list of texts.
Required before using `texts_to_sequences` or `texts_to_matrix`.
# Arguments
texts: can be a list of strings,
or a generator of strings (for memory-efficiency)
"""
self.document_count = 0
for text in texts:
self.document_count += 1
seq = text if self.char_level else text_to_word_sequence(text,
self.filters,
self.lower,
self.split)
for w in seq:
if w in self.word_counts:
self.word_counts[w] += 1
else:
self.word_counts[w] = 1
for w in set(seq):
if w in self.word_docs:
self.word_docs[w] += 1
else:
self.word_docs[w] = 1
wcounts = list(self.word_counts.items())
wcounts.sort(key=lambda x: x[1], reverse=True)
sorted_voc = [wc[0] for wc in wcounts]
# note that index 0 is reserved, never assigned to an existing word
self.word_index = dict(list(zip(sorted_voc, list(range(1, len(sorted_voc) + 1)))))
self.index_docs = {}
for w, c in list(self.word_docs.items()):
self.index_docs[self.word_index[w]] = c
def fit_on_sequences(self, sequences):
"""Updates internal vocabulary based on a list of sequences.
Required before using `sequences_to_matrix`
(if `fit_on_texts` was never called).
# Arguments
sequences: A list of sequence.
A "sequence" is a list of integer word indices.
"""
self.document_count = len(sequences)
self.index_docs = {}
for seq in sequences:
seq = set(seq)
for i in seq:
if i not in self.index_docs:
self.index_docs[i] = 1
else:
self.index_docs[i] += 1
def texts_to_sequences(self, texts):
"""Transforms each text in texts in a sequence of integers.
Only top "num_words" most frequent words will be taken into account.
Only words known by the tokenizer will be taken into account.
# Arguments
texts: A list of texts (strings).
# Returns
A list of sequences.
"""
res = []
for vect in self.texts_to_sequences_generator(texts):
res.append(vect)
return res
def texts_to_sequences_generator(self, texts):
"""Transforms each text in texts in a sequence of integers.
Only top "num_words" most frequent words will be taken into account.
Only words known by the tokenizer will be taken into account.
# Arguments
texts: A list of texts (strings).
# Yields
Yields individual sequences.
"""
num_words = self.num_words
for text in texts:
seq = text if self.char_level else text_to_word_sequence(text,
self.filters,
self.lower,
self.split)
vect = []
for w in seq:
i = self.word_index.get(w)
if i is not None:
if self.word_counts[w] >= self.min_word_count or (num_words is not None and i < num_words):
vect.append(i)
# words += w + ' '
yield vect
def texts_to_matrix(self, texts, mode='binary'):
"""Convert a list of texts to a Numpy matrix.
# Arguments
texts: list of strings.
mode: one of "binary", "count", "tfidf", "freq".
# Returns
A Numpy matrix.
"""
sequences = self.texts_to_sequences(texts)
return self.sequences_to_matrix(sequences, mode=mode)
def sequences_to_matrix(self, sequences, mode='binary'):
"""Converts a list of sequences into a Numpy matrix.
# Arguments
sequences: list of sequences
(a sequence is a list of integer word indices).
mode: one of "binary", "count", "tfidf", "freq"
# Returns
A Numpy matrix.
# Raises
ValueError: In case of invalid `mode` argument,
or if the Tokenizer requires to be fit to sample data.
"""
if not self.num_words:
if self.word_index:
num_words = len(self.word_index) + 1
else:
raise ValueError('Specify a dimension (num_words argument), '
'or fit on some text data first.')
else:
num_words = self.num_words
if mode == 'tfidf' and not self.document_count:
raise ValueError('Fit the Tokenizer on some data '
'before using tfidf mode.')
x = np.zeros((len(sequences), num_words))
for i, seq in enumerate(sequences):
if not seq:
continue
counts = {}
for j in seq:
if j >= num_words:
continue
if j not in counts:
counts[j] = 1.
else:
counts[j] += 1
for j, c in list(counts.items()):
if mode == 'count':
x[i][j] = c
elif mode == 'freq':
x[i][j] = c / len(seq)
elif mode == 'binary':
x[i][j] = 1
elif mode == 'tfidf':
# Use weighting scheme 2 in
# https://en.wikipedia.org/wiki/Tf%E2%80%93idf
tf = 1 + np.log(c)
idf = np.log(1 + self.document_count /
(1 + self.index_docs.get(j, 0)))
x[i][j] = tf * idf
else:
raise ValueError('Unknown vectorization mode:', mode)
return x