forked from karlseguin/ccache
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayeredcache.go
355 lines (321 loc) · 9.7 KB
/
layeredcache.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// An LRU cached aimed at high concurrency
package ccache
import (
"container/list"
"hash/fnv"
"sync/atomic"
"time"
)
type LayeredCache struct {
*Configuration
list *list.List
buckets []*layeredBucket
bucketMask uint32
size int64
deletables chan *Item
promotables chan *Item
control chan interface{}
}
// Create a new layered cache with the specified configuration.
// A layered cache used a two keys to identify a value: a primary key
// and a secondary key. Get, Set and Delete require both a primary and
// secondary key. However, DeleteAll requires only a primary key, deleting
// all values that share the same primary key.
// Layered Cache is useful as an HTTP cache, where an HTTP purge might
// delete multiple variants of the same resource:
// primary key = "user/44"
// secondary key 1 = ".json"
// secondary key 2 = ".xml"
// See ccache.Configure() for creating a configuration
func Layered(config *Configuration) *LayeredCache {
c := &LayeredCache{
list: list.New(),
Configuration: config,
bucketMask: uint32(config.buckets) - 1,
buckets: make([]*layeredBucket, config.buckets),
deletables: make(chan *Item, config.deleteBuffer),
control: make(chan interface{}),
}
for i := 0; i < int(config.buckets); i++ {
c.buckets[i] = &layeredBucket{
buckets: make(map[string]*bucket),
}
}
c.restart()
return c
}
func (c *LayeredCache) ItemCount() int {
count := 0
for _, b := range c.buckets {
count += b.itemCount()
}
return count
}
// Get an item from the cache. Returns nil if the item wasn't found.
// This can return an expired item. Use item.Expired() to see if the item
// is expired and item.TTL() to see how long until the item expires (which
// will be negative for an already expired item).
func (c *LayeredCache) Get(primary, secondary string) *Item {
item := c.bucket(primary).get(primary, secondary)
if item == nil {
return nil
}
if item.expires > time.Now().UnixNano() {
select {
case c.promotables <- item:
default:
}
}
return item
}
func (c *LayeredCache) ForEachFunc(primary string, matches func(key string, item *Item) bool) {
c.bucket(primary).forEachFunc(primary, matches)
}
// Get the secondary cache for a given primary key. This operation will
// never return nil. In the case where the primary key does not exist, a
// new, underlying, empty bucket will be created and returned.
func (c *LayeredCache) GetOrCreateSecondaryCache(primary string) *SecondaryCache {
primaryBkt := c.bucket(primary)
bkt := primaryBkt.getSecondaryBucket(primary)
primaryBkt.Lock()
if bkt == nil {
bkt = &bucket{lookup: make(map[string]*Item)}
primaryBkt.buckets[primary] = bkt
}
primaryBkt.Unlock()
return &SecondaryCache{
bucket: bkt,
pCache: c,
}
}
// Used when the cache was created with the Track() configuration option.
// Avoid otherwise
func (c *LayeredCache) TrackingGet(primary, secondary string) TrackedItem {
item := c.Get(primary, secondary)
if item == nil {
return NilTracked
}
item.track()
return item
}
// Set the value in the cache for the specified duration
func (c *LayeredCache) TrackingSet(primary, secondary string, value interface{}, duration time.Duration) TrackedItem {
return c.set(primary, secondary, value, duration, true)
}
// Set the value in the cache for the specified duration
func (c *LayeredCache) Set(primary, secondary string, value interface{}, duration time.Duration) {
c.set(primary, secondary, value, duration, false)
}
// Replace the value if it exists, does not set if it doesn't.
// Returns true if the item existed an was replaced, false otherwise.
// Replace does not reset item's TTL nor does it alter its position in the LRU
func (c *LayeredCache) Replace(primary, secondary string, value interface{}) bool {
item := c.bucket(primary).get(primary, secondary)
if item == nil {
return false
}
c.Set(primary, secondary, value, item.TTL())
return true
}
// Attempts to get the value from the cache and calles fetch on a miss.
// If fetch returns an error, no value is cached and the error is returned back
// to the caller.
// Note that Fetch merely calls the public Get and Set functions. If you want
// a different Fetch behavior, such as thundering herd protection or returning
// expired items, implement it in your application.
func (c *LayeredCache) Fetch(primary, secondary string, duration time.Duration, fetch func() (interface{}, error)) (*Item, error) {
item := c.Get(primary, secondary)
if item != nil {
return item, nil
}
value, err := fetch()
if err != nil {
return nil, err
}
return c.set(primary, secondary, value, duration, false), nil
}
// Remove the item from the cache, return true if the item was present, false otherwise.
func (c *LayeredCache) Delete(primary, secondary string) bool {
item := c.bucket(primary).delete(primary, secondary)
if item != nil {
c.deletables <- item
return true
}
return false
}
// Deletes all items that share the same primary key
func (c *LayeredCache) DeleteAll(primary string) bool {
return c.bucket(primary).deleteAll(primary, c.deletables)
}
// Deletes all items that share the same primary key and prefix.
func (c *LayeredCache) DeletePrefix(primary, prefix string) int {
return c.bucket(primary).deletePrefix(primary, prefix, c.deletables)
}
// Deletes all items that share the same primary key and where the matches func evaluates to true.
func (c *LayeredCache) DeleteFunc(primary string, matches func(key string, item *Item) bool) int {
return c.bucket(primary).deleteFunc(primary, matches, c.deletables)
}
// Clears the cache
func (c *LayeredCache) Clear() {
done := make(chan struct{})
c.control <- clear{done: done}
<-done
}
func (c *LayeredCache) Stop() {
close(c.promotables)
<-c.control
}
// Gets the number of items removed from the cache due to memory pressure since
// the last time GetDropped was called
func (c *LayeredCache) GetDropped() int {
return doGetDropped(c.control)
}
// SyncUpdates waits until the cache has finished asynchronous state updates for any operations
// that were done by the current goroutine up to now. See Cache.SyncUpdates for details.
func (c *LayeredCache) SyncUpdates() {
doSyncUpdates(c.control)
}
// Sets a new max size. That can result in a GC being run if the new maxium size
// is smaller than the cached size
func (c *LayeredCache) SetMaxSize(size int64) {
done := make(chan struct{})
c.control <- setMaxSize{size: size, done: done}
<-done
}
// Forces GC. There should be no reason to call this function, except from tests
// which require synchronous GC.
// This is a control command.
func (c *LayeredCache) GC() {
done := make(chan struct{})
c.control <- gc{done: done}
<-done
}
// Gets the size of the cache. This is an O(1) call to make, but it is handled
// by the worker goroutine. It's meant to be called periodically for metrics, or
// from tests.
// This is a control command.
func (c *LayeredCache) GetSize() int64 {
res := make(chan int64)
c.control <- getSize{res}
return <-res
}
func (c *LayeredCache) restart() {
c.promotables = make(chan *Item, c.promoteBuffer)
c.control = make(chan interface{})
go c.worker()
}
func (c *LayeredCache) set(primary, secondary string, value interface{}, duration time.Duration, track bool) *Item {
item, existing := c.bucket(primary).set(primary, secondary, value, duration, track)
if existing != nil {
c.deletables <- existing
}
c.promote(item)
return item
}
func (c *LayeredCache) bucket(key string) *layeredBucket {
h := fnv.New32a()
h.Write([]byte(key))
return c.buckets[h.Sum32()&c.bucketMask]
}
func (c *LayeredCache) promote(item *Item) {
c.promotables <- item
}
func (c *LayeredCache) worker() {
defer close(c.control)
dropped := 0
promoteItem := func(item *Item) {
if c.doPromote(item) && c.size > c.maxSize {
dropped += c.gc()
}
}
deleteItem := func(item *Item) {
if item.element == nil {
atomic.StoreInt32(&item.promotions, -2)
} else {
c.size -= item.size
if c.onDelete != nil {
c.onDelete(item)
}
c.list.Remove(item.element)
}
}
for {
select {
case item, ok := <-c.promotables:
if ok == false {
return
}
promoteItem(item)
case item := <-c.deletables:
deleteItem(item)
case control := <-c.control:
switch msg := control.(type) {
case getDropped:
msg.res <- dropped
dropped = 0
case setMaxSize:
c.maxSize = msg.size
if c.size > c.maxSize {
dropped += c.gc()
}
msg.done <- struct{}{}
case clear:
for _, bucket := range c.buckets {
bucket.clear()
}
c.size = 0
c.list = list.New()
msg.done <- struct{}{}
case getSize:
msg.res <- c.size
case gc:
dropped += c.gc()
msg.done <- struct{}{}
case syncWorker:
doAllPendingPromotesAndDeletes(c.promotables, promoteItem,
c.deletables, deleteItem)
msg.done <- struct{}{}
}
}
}
}
func (c *LayeredCache) doPromote(item *Item) bool {
// deleted before it ever got promoted
if atomic.LoadInt32(&item.promotions) == -2 {
return false
}
if item.element != nil { //not a new item
if item.shouldPromote(c.getsPerPromote) {
c.list.MoveToFront(item.element)
atomic.StoreInt32(&item.promotions, 0)
}
return false
}
c.size += item.size
item.element = c.list.PushFront(item)
return true
}
func (c *LayeredCache) gc() int {
element := c.list.Back()
dropped := 0
itemsToPrune := int64(c.itemsToPrune)
if min := c.size - c.maxSize; min > itemsToPrune {
itemsToPrune = min
}
for i := int64(0); i < itemsToPrune; i++ {
if element == nil {
return dropped
}
prev := element.Prev()
item := element.Value.(*Item)
if c.tracking == false || atomic.LoadInt32(&item.refCount) == 0 {
c.bucket(item.group).delete(item.group, item.key)
c.size -= item.size
c.list.Remove(element)
item.promotions = -2
dropped += 1
}
element = prev
}
return dropped
}