-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContactHoleMCMCTemplate.py
192 lines (150 loc) · 5.53 KB
/
ContactHoleMCMCTemplate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 23 12:35:32 2017
@author: dfs1
"""
import numpy as np
import ContactHoleFunctions as CD
from multiprocessing import Pool
import time
import scipy.special as sp
import os
# Imports Intensity and Qx/Qr positions, normalizes lowest intensity to 1
Intensity=np.loadtxt('AInt.txt')
Qr = np.loadtxt('AQr.txt')
Qz = np.loadtxt('AQz.txt')
Intensity[np.isnan(Intensity)]=1
IM=np.min(Intensity)
Intensity=np.loadtxt('AInt.txt')
Intensity=Intensity/IM
# end Data import section
ConeNumber = 2
CPAR=np.zeros([ConeNumber+1,2])
SLD=np.zeros(ConeNumber+1)
Discretization = np.zeros(ConeNumber)
Pitch = 120
CPAR[0,0]= 22; CPAR[0,1]=160; SLD[0]=1;
CPAR[1,0]= 27; CPAR[1,1]= 33; SLD[1]=2.2;
CPAR[2,0]=30; CPAR[2,1]=0;
Coord=CD.CoordAssign(CPAR,SLD,ConeNumber,Pitch)
Discretization[0]=40
Discretization[1]=10
I0=0.000001
Bk=1
DW=1.5
SPAR=np.zeros(3)
SPAR[0]=DW; SPAR[1]=I0; SPAR[2]=Bk;
(FITPAR,FITPARLB,FITPARUB)=CD.PBA_Cone(CPAR,SPAR,ConeNumber)
MCPAR=np.zeros([7])
MCPAR[0] = 2 # Chainnumber
MCPAR[1] = len(FITPAR)
MCPAR[2] = 100 #stepnumber
MCPAR[3] = 0 #randomchains
MCPAR[4] = 1 # Resampleinterval
MCPAR[5] = 100 # stepbase
MCPAR[6] = 100 # steplength
def ConeIntensitySim(FITPAR):
H1 = 0
H2 = 0
Form=np.zeros([int(len(Qr[:,0])),int(len(Qr[0,:]))])
CPAR=np.zeros([ConeNumber+1,2])
CPAR[:,0:2]=np.reshape(FITPAR[0:(ConeNumber+1)*2],(ConeNumber+1,2))
SPAR=FITPAR[ConeNumber*2+2:ConeNumber*2+5]
for i in range (ConeNumber):
H2=H2+CPAR[i,1]
z=np.zeros([int(Discretization[i])])
stepsize=CPAR[i,1]/Discretization[i]
z=np.arange(H1,H2+0.01,stepsize)
if i > 0 :
H1=H1+CPAR[i-1,1]
z=np.arange(H1,H2+0.01,stepsize)
R1=CPAR[i,0]
R2=CPAR[i+1,0]
if R1==R2:
R1=R1+0.000001
Slope=(H2-H1)/(R2-R1)
for ii in range(len(z)-1):
RI1=(z[ii]-H1)/Slope+R1
RI2=(z[ii+1]-H1)/Slope+R1
fa=2*np.pi*RI1/Qr*sp.jv(1,Qr*RI1)*np.exp(1j*Qz*z[ii])
fb=2*np.pi*RI2/Qr*sp.jv(1,Qr*RI2)*np.exp(1j*Qz*z[ii+1])
Form=Form+stepsize*(fb+fa)/2*SLD[i]
M=np.power(np.exp(-1*(np.power(Qr,2)+np.power(Qz,2))*np.power(SPAR[0],2)),0.5)
Formfactor=Form*M
Formfactor=abs(Formfactor)
SimInt = np.power(Formfactor,2)*SPAR[1]+SPAR[2]
return (SimInt)
def MCMCInit_Cone(FITPAR,FITPARLB,FITPARUB,MCPAR):
MCMCInit=np.zeros([int(MCPAR[0]),int(MCPAR[1])+1])
for i in range(int(MCPAR[0])):
if i <MCPAR[3]: #reversed from matlab code assigns all chains below randomnumber as random chains
for c in range(int(MCPAR[1])):
MCMCInit[i,c]=FITPARLB[c]+(FITPARUB[c]-FITPARLB[c])*np.random.random_sample()
SimInt=ConeIntensitySim(MCMCInit[i,:])
C=np.sum(CD.Misfit(Intensity,SimInt))
MCMCInit[i,int(MCPAR[1])]=C
else:
MCMCInit[i,0:int(MCPAR[1])]=FITPAR
SimInt=ConeIntensitySim(MCMCInit[i,:])
C=np.sum(CD.Misfit(Intensity,SimInt))
MCMCInit[i,int(MCPAR[1])]=C
return MCMCInit
def MCMC_Cone(MCMC_List):
np.random.seed(os.getpid())
MCMCInit=MCMC_List
L = int(MCPAR[1])
Stepnumber= int(MCPAR[2])
SampledMatrix=np.zeros([Stepnumber,L+1])
SampledMatrix[0,:]=MCMCInit
Move = np.zeros([L+1])
ChiPrior = MCMCInit[L]
for step in np.arange(1,Stepnumber,1):
Temp = SampledMatrix[step-1,:].copy()
for p in range(L-1):
StepControl = MCPAR[5]+MCPAR[6]*np.random.random_sample()
Move[p] = (FITPARUB[p]-FITPARLB[p])/StepControl*(np.random.random_sample()-0.5) # need out of bounds check
Temp[p]=Temp[p]+Move[p]
if Temp[p] < FITPARLB[p]:
Temp[p]=FITPARLB[p]+(FITPARUB[p]-FITPARLB[p])/1000
elif Temp[p] > FITPARUB[p]:
Temp[p]=FITPARUB[p]-(FITPARUB[p]-FITPARLB[p])/1000
SimPost=ConeIntensitySim(Temp)
ChiPost=np.sum(CD.Misfit(Intensity,SimPost))
if ChiPost < ChiPrior:
SampledMatrix[step,0:L]=Temp[0:L]
SampledMatrix[step,L]=ChiPost
ChiPrior=ChiPost
else:
MoveProb = np.exp(-0.5*np.power(ChiPost-ChiPrior,2))
if np.random.random_sample() < MoveProb:
SampledMatrix[step,0:L]=Temp[0:L]
SampledMatrix[step,L]=ChiPost
ChiPrior=ChiPost
else:
SampledMatrix[step,:]=SampledMatrix[step-1,:]
AcceptanceNumber=0;
Acceptancetotal=len(SampledMatrix[:,1])
for i in np.arange(1,len(SampledMatrix[:,1]),1):
if SampledMatrix[i,0] != SampledMatrix[i-1,0]:
AcceptanceNumber=AcceptanceNumber+1
AcceptanceProbability=AcceptanceNumber/Acceptancetotal
print(AcceptanceProbability)
ReSampledMatrix=np.zeros([int(MCPAR[2])/int(MCPAR[4]),len(SampledMatrix[1,:])])
c=-1
for i in np.arange(0,len(SampledMatrix[:,1]),MCPAR[4]):
c=c+1
ReSampledMatrix[c,:]=SampledMatrix[i,:]
return (ReSampledMatrix)
MCMCInitial=MCMCInit_Cone(FITPAR,FITPARLB,FITPARUB,MCPAR)
MCMC_List=[0]*int(MCPAR[0])
for i in range(int(MCPAR[0])):
MCMC_List[i]=MCMCInitial[i,:]
start_time = time.perf_counter()
if __name__ =='__main__':
pool = Pool(processes=2)
F=pool.map(MCMC_Cone,MCMC_List)
F=tuple(F)
np.save('LAMtest',F) # add savedfilename here
end_time=time.perf_counter()
print(end_time-start_time)
ReSampledMatrix=F[0]