-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantum_circuit.py
100 lines (83 loc) · 3.05 KB
/
quantum_circuit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
from qiskit import QuantumCircuit
from qiskit_aer import Aer
import matplotlib.pyplot as plt
# Create circuit with 4 qubits (1 for sign, 3 for base-6 encoding)
qc = QuantumCircuit(4, 4)
# Initialize the sign qubit (0 for positive, 1 for negative)
qc.h(0) # Superposition of positive/negative states
# Create base-6 encoding using 3 qubits
for i in range(1, 4):
qc.h(i)
# Add phase rotation for base-6 encoding
qc.rz(2 * np.pi * i / 6, i)
# Entangle the sign qubit with the encoding qubits
for i in range(1, 4):
qc.cx(0, i)
# Add controlled phase relationships
phi = (1 + np.sqrt(5)) / 2 # Golden ratio
qc.cp(phi * np.pi/6, 1, 2)
qc.cp(phi * np.pi/6, 2, 3)
# Measure all qubits
qc.measure_all()
# Get the simulator
backend = Aer.get_backend('statevector_simulator')
job = backend.run(qc)
result = job.result()
statevector = result.get_statevector()
# Calculate probabilities
probabilities = np.abs(statevector) ** 2
# Separate positive and negative states
positive_states = []
negative_states = []
for i, prob in enumerate(probabilities):
if prob > 0.01: # Filter significant probabilities
binary = format(i, '04b')
if binary[0] == '0':
positive_states.append((binary, prob))
else:
negative_states.append((binary, prob))
print("Pos/Neg Quantum State Analysis:")
print("====================================")
print(f"Total number of states: {len(probabilities)}")
print(f"Sum of probabilities: {np.sum(probabilities):.6f}")
print("\
Positive States:")
print("----------------------------------")
for binary, prob in positive_states:
base6_val = int(binary[1:], 2) % 6
print(f"State |{binary}> (Base-6: {base6_val}): {prob:.4f}")
print("\
Negative States:")
print("----------------------------------")
for binary, prob in negative_states:
base6_val = int(binary[1:], 2) % 6
print(f"State |{binary}> (Base-6: {base6_val}): {prob:.4f}")
# Plot the probability distribution
plt.figure(figsize=(15, 6))
plt.subplot(1, 2, 1)
plt.bar([i for i, _ in enumerate(probabilities) if i < len(probabilities)//2],
[p for i, p in enumerate(probabilities) if i < len(probabilities)//2],
color='blue', alpha=0.6, label='Positive States')
plt.title('Positive States')
plt.xlabel('Quantum State')
plt.ylabel('Probability')
plt.legend()
plt.subplot(1, 2, 2)
plt.bar([i for i, _ in enumerate(probabilities) if i >= len(probabilities)//2],
[p for i, p in enumerate(probabilities) if i >= len(probabilities)//2],
color='red', alpha=0.6, label='Negative States')
plt.title('Negative States')
plt.xlabel('Quantum State')
plt.ylabel('Probability')
plt.legend()
plt.tight_layout()
plt.show()
# Calculate quantum biological metrics
print("\
Quantum Metrics:")
print("=========================")
print(f"φ (Golden Ratio): {phi:.6f}")
print(f"Base-6 Phase Angle: {2*np.pi/6:.6f} radians")
print(f"Entanglement Measure: {np.sum(probabilities[len(probabilities)//2:]):.6f}")
print(f"Pos/Neg Balance Ratio: {np.sum(probabilities[:len(probabilities)//2])/np.sum(probabilities[len(probabilities)//2:]):.6f}")