forked from cnr-ibf-pa/olfactory-bulb-utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.py
235 lines (186 loc) · 5.9 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# packages of various functions.
from copy import copy
from math import *
def mean(vec):
mu = 0.
for x in vec: mu += x
return mu/len(vec)
def std(vec):
mu = mean(vec)
s = 0.
for x in vec:
s += (x - mu)**2
return s/(len(vec)-1)
def distance(p, q):
x = p[0] - q[0]
y = p[1] - q[1]
z = p[2] - q[2]
return sqrt(x ** 2 + y ** 2 + z ** 2)
def plane_dist(p, w, o):
a = 0.
b = 0.
for i in range(3):
a += (p[i]-o[i])*w[i]
b += w[i]**2
return abs(a)/sqrt(b)
class Spherical:
@staticmethod
def to(p, center=[0,0,0]):
rho = distance(p, center)
p = copy(p); p[0] -= center[0]; p[1] -= center[1]; p[2] -= center[2]
phi = atan2(p[1], p[0])
try:
theta = acos(p[2] / rho)
except ZeroDivisionError:
theta = acos(p[2] / 1e-8)
return rho, phi, theta
@staticmethod
def xyz(rho, phi, theta, center=[0,0,0]):
x = rho * cos(phi) * sin(theta) + center[0]
y = rho * sin(phi) * sin(theta) + center[1]
z = rho * cos(theta) + center[2]
return [ x, y, z ]
def centroid(pts):
x = 0.
y = 0.
z = 0.
for p in pts:
x += p[0]
y += p[1]
z += p[2]
x /= len(pts)
y /= len(pts)
z /= len(pts)
return [ x, y, z ]
# for elliptical coords
class Ellipsoid:
def __init__(self, pos, axis):
self.__pos = copy(pos)
halfAxis = copy(axis)
for i in range(3): halfAxis[i] /= 2.
self.__inverse = halfAxis[0] < halfAxis[1]
self.__halfAxis = halfAxis
# eccentricity
a = 0; b = 1;
if halfAxis[a] < halfAxis[b]: b = 0; a = 1
self.__eccen = sqrt(halfAxis[a] ** 2 - halfAxis[b] ** 2) / halfAxis[a]
def intersect(self, p, u):
A = 0.
B = 0.
C = -1
v = []
for i in range(3):
A += (u[i]/self.__halfAxis[i])** 2
B += 2*u[i]*(p[i]-self.__pos[i]) / (self.__halfAxis[i]**2)
C += ((p[i]-self.__pos[i])/self.__halfAxis[i])**2
delta = B ** 2 - 4 * A * C
t0 = (-B+sqrt(delta)) / (2*A)
t1 = (-B-sqrt(delta)) / (2*A)
if abs(t0) < abs(t1):
t = t0
else:
t = t1
q = []
for i in range(3):
q.append(p[i] + t * u[i])
return q
def project(self, pos):
return self.intersect(pos, versor(pos, self.__pos))
def R(self, phi): return self.__halfAxis[0] / sqrt(1 - (self.__eccen * sin(phi)) ** 2)
# from elliptical to cartesian
def toXYZ(self, h, lamb, phi):
N = self.R(phi)
XYProj = (N + h) * cos(phi)
p = [ XYProj * cos(lamb),
XYProj * sin(lamb),
((1 - self.__eccen ** 2) * N + h) * sin(phi) ]
if self.__inverse: aux = p[0]; p[0] = p[1]; p[1] = aux
for i in range(3): p[i] += self.__pos[i]
return p
# from cartesian to elliptical
def toElliptical(self, pt):
x = pt[0] - self.__pos[0]
y = pt[1] - self.__pos[1]
z = pt[2] - self.__pos[2]
if self.__inverse: aux = y; y = x; x = aux
lamb = atan2(y, x)
p = sqrt(x ** 2 + y ** 2)
try:
phi = atan(z / ((1 - self.__eccen ** 2) * p))
except ZeroDivisionError:
phi = atan(z / 1e-8)
MAXIT = int(1e+4)
for i in range(MAXIT):
phi1 = phi
N = self.R(phi)
h = p / cos(phi) - N
try:
phi = atan(z / ((1 - self.__eccen ** 2 * N / (N + h)) * p))
except ZeroDivisionError:
phi = atan(z / 1e-8)
if abs(phi - phi1) < 1e-8: break
return h, lamb, phi
def getZ(self, pt):
x = pt[0]; y = pt[1]
try:
return self.__pos[2] + self.__halfAxis[2] * sqrt(1 - ((x - self.__pos[0]) / self.__halfAxis[0]) ** 2 - ((y - self.__pos[1]) / self.__halfAxis[1]) ** 2)
except ValueError:
return None
def normalRadius(self, pt):
r = 0.
for i in range(3): r += ((pt[i] - self.__pos[i]) / self.__halfAxis[i]) ** 2
return r
def toElliptical2(self, phi, theta):
p=Spherical.xyz(1, phi, theta)
for i in range(3):
p[i]*=self.__halfAxis[i]
p[i]+=self.__pos[i]
return p
# laplace rng
def rLaplace(r, mu, b):
p = r.uniform(0, 1)
if p > .5: return -log((1 - p) * 2) * b + mu
return log(p * 2) * b + mu
# return versor between two points
def versor(p, q):
d = distance(p, q)
v = [ 0 ] * 3
for i in range(3): v[i] = (p[i] - q[i]) / d
return v
# return points on line
def getP(t, v, q):
p = [ 0 ] * 3
for i in range(3): p[i] = t * v[i] + q[i]
return p
# stretch a section
def stretchSection(sec, p):
dx = (sec[-1][0] - p[0]) / (len(sec) - 1)
dy = (sec[-1][1] - p[1]) / (len(sec) - 1)
dz = (sec[-1][2] - p[2]) / (len(sec) - 1)
for k in range(1, len(sec)):
sec[k][0] -= k * dx
sec[k][1] -= k * dy
sec[k][2] -= k * dz
class Matrix:
@staticmethod
def RZ(phi):
return [[cos(phi),-sin(phi),0], [sin(phi),cos(phi),0], [0,0,1]]
@staticmethod
def RY(theta):
return [[cos(theta),0,sin(theta)],[0,1,0],[-sin(theta),0,cos(theta)]]
@staticmethod
def prod(m, v):
ret_v = [0]*len(v)
for i in range(len(m)):
for j in range(len(m[i])):
ret_v[i] += v[j] * m[i][j]
return ret_v
def convert_direction(phi, theta, phibase, thetabase, inv=False):
u = Spherical.xyz(1, phi, theta)
if inv:
m1 = Matrix.RZ(-phibase)
m2 = Matrix.RY(-thetabase)
else:
m2 = Matrix.RZ(phibase)
m1 = Matrix.RY(thetabase)
return Spherical.to(Matrix.prod(m2, Matrix.prod(m1, u)))[1:]