-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
285 lines (222 loc) · 9.78 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import torch
import random
import torchvision
import torch.nn as nn
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.optim.lr_scheduler as sched
import torch.nn.utils as utils
from torch.distributions.normal import Normal
from collections import namedtuple
from tqdm import tqdm
from glow import _Glow, PreProcess, squeeze
from modules import *
from shell_util import AverageMeter, save_model
from optim_util import bits_per_dim
from dataloader import MovingObjects
from tensorboardX import SummaryWriter
from sacred import Experiment
from sacred.observers import FileStorageObserver
global_step = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pre_process = PreProcess().to(device)
Z_splits = namedtuple('Z_splits', 'l3 l2 l1')
Glow = namedtuple('Glow', 'l3 l2 l1')
NN_Theta = namedtuple('NNTheta', 'l3 l2 l1')
PATH = './sacred/'
writer = SummaryWriter(PATH)
ex = Experiment()
ex.observers.append(FileStorageObserver.create(PATH))
@ex.config
def config():
tr_conf = {
'encoder_mode': 'conv_net',
'enc_depth': 5,
'n_epoch': 600,
'b_s': 26,
'lr': 1e-4,
'k': 256,
'input_channels': 3,
'resume': True,
'starting_epoch': 56
}
def train_smovement(train_loader, glow, nn_theta, loss_fn, optimizer, scheduler, epoch):
print("ID: exp12_1 testing lr 1e-4 and only one step movement, no glow loss with random patch")
global global_step
loss_meter = AverageMeter()
# loss_fn_glow = GlowLoss()
for net in glow:
net.train()
for net in nn_theta:
net.train()
with tqdm(total=len(train_loader.dataset)) as progress_bar:
for itr, sequence in enumerate(train_loader):
sequence = sequence.to(device)
b_s = sequence.size(0)
# start_index = torch.LongTensor(1).random_(0, 2)
# random_patch = sequence[:, start_index:start_index + 2, :, :, :]
random_patch = []
for n in range(b_s):
start_index = torch.LongTensor(1).random_(0, 2)
random_patch.append(sequence[n, start_index:start_index + 2, :, :, :])
random_patch = torch.stack(random_patch, dim=0)
t0_zi, _, sldj_0 = flow_forward(random_patch[:, 0, :, :, :], glow)
# z_glow = recover_z_shape(t0_zi)
# loss_glow = loss_fn_glow(z_glow, sldj_0)
t1_zi_out, t1_zi_h, sldj_1 = flow_forward(random_patch[:, 1, :, :, :], glow)
h12 = t1_zi_h.l3
mu_l3, logsigma_l3 = nn_theta.l3(t0_zi.l3, h12)
g3 = Normal(loc=mu_l3, scale=torch.exp(logsigma_l3))
h1 = t1_zi_h.l2
mu_l2, logsigma_l2 = nn_theta.l2(t0_zi.l2, h1)
g2 = Normal(loc=mu_l2, scale=torch.exp(logsigma_l2))
mu_l1, logsigma_l1 = nn_theta.l1(t0_zi.l1)
g1 = Normal(loc=mu_l1, scale=torch.exp(logsigma_l1))
total_loss = loss_fn(g1, g2, g3, z=t1_zi_out, sldj=sldj_1,
input_dim=random_patch[:, 1, :, :, :].size())
# total_loss = loss #+ loss_glow
total_loss.backward()
clip_grad_value(optimizer)
optimizer.step()
optimizer.zero_grad()
if scheduler is not None:
scheduler.step(global_step)
loss_meter.update(total_loss.item(), b_s)
progress_bar.set_postfix(nll=loss_meter.avg,
bpd=bits_per_dim(random_patch[:, 1, :, :, :], loss_meter.avg),
lr=optimizer.param_groups[0]['lr'])
progress_bar.update(b_s)
global_step += 1
print("global step:", global_step)
torch.cuda.empty_cache()
#save_model(glow, nn_theta, optimizer, scheduler, epoch, PATH)
save_model(glow, nn_theta, optimizer, epoch, PATH)
writer.add_scalar('data/train_loss', loss_meter.avg, epoch)
writer.add_scalar('data/lr', get_lr(optimizer), epoch)
context = next(iter(train_loader)).cuda()
flow_inverse_smovement(context, glow, nn_theta, epoch)
def recover_z_shape(t_z):
z1 = squeeze(t_z.l1, reverse=True)
z2 = torch.cat([z1, t_z.l2], dim=1)
z2 = squeeze(z2, reverse=True)
z3 = torch.cat([z2, t_z.l3], dim=1)
z3 = squeeze(z3, reverse=True)
return z3
def clip_grad_value(optimizer, max_val=10.):
for group in optimizer.param_groups:
utils.clip_grad_value_(group['params'], max_val)
def flow_forward(x, flow):
if x.min() < 0 or x.max() > 1:
raise ValueError('Expected x in [0, 1], got min/max {}/{}'
.format(x.min(), x.max()))
# pre-process
x, sldj = pre_process(x)
# L3
x3 = squeeze(x, reverse=False)
x3, sldj = flow.l3(x3, sldj, reverse=False)
x3, x_split3 = x3.chunk(2, dim=1)
# L2
x2 = squeeze(x3, reverse=False)
x2, sldj = flow.l2(x2, sldj, reverse=False)
x2, x_split2 = x2.chunk(2, dim=1)
# L1
x1 = squeeze(x2, reverse=False)
x1, sldj = flow.l1(x1, sldj)
partition_out = Z_splits(l3=x_split3, l2=x_split2, l1=x1)
partition_h = Z_splits(l3=x3, l2=x2, l1=None)
return partition_out, partition_h, sldj
def flow_inverse_smovement(context, glow, nn_theta, epoch):
for net in glow:
net.eval()
for net in nn_theta:
net.eval()
# pre-process the context frame
b_s = context.size(0)
context_frame = context[:, 0, ...]
t0_zi, _, _ = flow_forward(context_frame, glow)
mu_l1, logsigma_l1 = nn_theta.l1(t0_zi.l1)
g1 = Normal(loc=mu_l1, scale=torch.exp(logsigma_l1))
z1_sample = g1.sample()
print("z1", z1_sample.shape)
sldj = torch.zeros(b_s, device=device)
# Inverse L1
h1, sldj = glow.l1(z1_sample, sldj, reverse=True)
h1 = squeeze(h1, reverse=True)
# Sample z2
mu_l2, logsigma_l2 = nn_theta.l2(t0_zi.l2, h1)
g2 = Normal(loc=mu_l2, scale=torch.exp(logsigma_l2))
z2_sample = g2.sample()
h12 = torch.cat([h1, z2_sample], dim=1)
h12, sldj = glow.l2(h12, sldj, reverse=True)
h12 = squeeze(h12, reverse=True)
# Sample z3
mu_l3, logsigma_l3 = nn_theta.l3(t0_zi.l3, h12)
g3 = Normal(loc=mu_l3, scale=torch.exp(logsigma_l3))
z3_sample = g3.sample()
x_t = torch.cat([h12, z3_sample], dim=1)
x_t, sldj = glow.l3(x_t, sldj, reverse=True)
x_t = squeeze(x_t, reverse=True)
x_t = torch.sigmoid(x_t)
torchvision.utils.save_image(x_t, 'samples/sample{}.png'.format(epoch))
torchvision.utils.save_image(context[:, 0, ...].squeeze(), 'samples/context{}.png'.format(epoch))
torchvision.utils.save_image(context[:, 1, ...].squeeze(), 'samples/gt{}.png'.format(epoch))
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
@ex.automain
def main(tr_conf):
import torch.nn as nn
seed = 12345
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
tr = transforms.Compose([transforms.ToTensor()])
train_data = MovingObjects("train", tr, seed)
train_loader = DataLoader(train_data,
num_workers=tr_conf['b_s'],
batch_size=tr_conf['b_s'],
shuffle=True,
pin_memory=True)
param_list = []
in_chs = tr_conf['input_channels']
flow_l3 = nn.DataParallel(_Glow(in_channels=4 * in_chs, mid_channels=512, num_steps=24)).to(device)
flow_l2 = nn.DataParallel(_Glow(in_channels=8 * in_chs, mid_channels=512, num_steps=24)).to(device)
flow_l1 = nn.DataParallel(_Glow(in_channels=16 * in_chs, mid_channels=512, num_steps=24)).to(device)
nntheta3 = nn.DataParallel(
NNTheta(encoder_ch_in=4 * in_chs, encoder_mode=tr_conf['encoder_mode'], h_ch_in=2 * in_chs,
num_blocks=tr_conf['enc_depth'])).to(device) # z1:2x32x32
nntheta2 = nn.DataParallel(
NNTheta(encoder_ch_in=8 * in_chs, encoder_mode=tr_conf['encoder_mode'], h_ch_in=4 * in_chs,
num_blocks=tr_conf['enc_depth'])).to(device) # z2:4x16x16
nntheta1 = nn.DataParallel(NNTheta(encoder_ch_in=16 * in_chs, encoder_mode=tr_conf['encoder_mode'],
num_blocks=tr_conf['enc_depth'])).to(device)
model_path = '/b_test/azimi/results/VideoFlow/SMovement/exp12_2/sacred/snapshots/55.pth'
if tr_conf['resume']:
print('model loading ...')
flow_l3.load_state_dict(torch.load(model_path)['glow_l3'])
flow_l2.load_state_dict(torch.load(model_path)['glow_l2'])
flow_l1.load_state_dict(torch.load(model_path)['glow_l1'])
nntheta3.load_state_dict(torch.load(model_path)['nn_theta_l3'])
nntheta2.load_state_dict(torch.load(model_path)['nn_theta_l2'])
nntheta1.load_state_dict(torch.load(model_path)['nn_theta_l1'])
print("****LOAD THE OPTIMIZER")
glow = Glow(l3=flow_l3, l2=flow_l2, l1=flow_l1)
nn_theta = NN_Theta(l3=nntheta3, l2=nntheta2, l1=nntheta1)
for f_level in glow:
param_list += list(f_level.parameters())
for nn in nn_theta:
param_list += list(nn.parameters())
loss_fn = NLLLossVF()
optimizer = torch.optim.Adam(param_list, lr=tr_conf['lr'])
optimizer.load_state_dict(torch.load(model_path)['optimizer'])
optimizer.zero_grad()
# scheduler_step = sched.StepLR(optimizer, step_size=1, gamma=0.99)
# linear_decay = sched.LambdaLR(optimizer, lambda s: 1. - s / 150000. )
# linear_decay.step(global_step)
# scheduler = sched.LambdaLR(optimizer, lambda s: min(1., s / 10000))
# optimizer.load_state_dict(torch.load(model_path)['optimizer'])
for epoch in range(tr_conf['starting_epoch'], tr_conf['n_epoch']):
print("the learning rate for epoch {} is {}".format(epoch, get_lr(optimizer)))
train_smovement(train_loader, glow, nn_theta, loss_fn, optimizer, None, epoch)
#scheduler_step.step()