-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModesInBands.m
265 lines (228 loc) · 8 KB
/
ModesInBands.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
addpath('Hopf_Delay_Toolbox');
% Simulations
simulation_files={'d4_HCP_Sim_Cluster_K1E1_MD0','d4_HCP_Sim_Cluster_K1E-1_MD3','Independent_AAL_HCP_Simu_K1E1_MD3','d4_HCP_Sim_Cluster_K1E1p7_MD3','AAL_HCP_Simu_K1E1_MD10'};
simulation_names={'No delays','Weak K','Intermediate K','Strong K','Long delays'};
N = 90;
Order=[1:2:N N:-2:2];
% Frequency bands to analyze (in Hz)
delta = [0.5 4];
theta = [4 8];
alpha = [8 13];
beta = [13 30];
gamma = [30 60];
n_simu=length(simulation_names);
figure
lim=0.002;
for simu=1:n_simu
disp(simulation_names{simu})
load(simulation_files{simu},'Zsave','dt_save')
Zsave = Zsave./(5*std(Zsave(:))); % Check if we remove this
Zsave=Zsave(Order,:);
Zdelta = zeros(size(Zsave));
Ztheta = zeros(size(Zsave));
Zalpha = zeros(size(Zsave));
Zbeta = zeros(size(Zsave));
Zgamma = zeros(size(Zsave));
for n=1:90
Zdelta(n,:) = bandpasshopf(Zsave(n,:), delta , 1/dt_save);
Ztheta(n,:) = bandpasshopf(Zsave(n,:), theta , 1/dt_save);
Zalpha(n,:) = bandpasshopf(Zsave(n,:), alpha , 1/dt_save);
Zbeta(n,:) = bandpasshopf(Zsave(n,:), beta , 1/dt_save);
Zgamma(n,:) = bandpasshopf(Zsave(n,:), gamma , 1/dt_save);
end
% Remove the first and last seconds after band pass filtering
Zdelta(:,[1:1/dt_save end-1/dt_save:end])=[];
Ztheta(:,[1:1/dt_save end-1/dt_save:end])=[];
Zalpha(:,[1:1/dt_save end-1/dt_save:end])=[];
Zbeta(:,[1:1/dt_save end-1/dt_save:end])=[];
Zgamma(:,[1:1/dt_save end-1/dt_save:end])=[];
% Calculate amplitude envelope
Env_Delta=abs(hilbert(Zdelta'))';
Env_Theta=abs(hilbert(Ztheta'))';
Env_Alpha=abs(hilbert(Zalpha'))';
Env_Beta =abs(hilbert(Zbeta'))';
Env_Gamma =abs(hilbert(Zgamma'))';
% Envelope Covariance and Eigenvalues (Modes)
FC_Delta=cov(Env_Delta');
FC_Theta=cov(Env_Theta');
FC_Alpha=cov(Env_Alpha');
FC_Beta=cov(Env_Beta');
FC_Gamma=cov(Env_Gamma');
% If you want to use Correlation instead of covariance
% FC_Delta=corrcoef(Env_Delta');
% FC_Theta=corrcoef(Env_Theta');
% FC_Alpha=corrcoef(Env_Alpha');
% FC_Beta=corrcoef(Env_Beta');
% FC_Gamma=corrcoef(Env_Gamma');
EigVal_Delta=sort(eig(FC_Delta),'descend');
EigVal_Theta=sort(eig(FC_Theta),'descend');
EigVal_Alpha=sort(eig(FC_Alpha),'descend');
EigVal_Beta=sort(eig(FC_Beta),'descend');
EigVal_Gamma=sort(eig(FC_Gamma),'descend');
Isubdiag = find(tril(ones(90),-1));
colormap(jet)
subplot(4,n_simu,simu)
lim=4*std(abs(FC_Beta(Isubdiag)));
%lim=mean(diag(FC_Beta));
imagesc(FC_Beta,[-lim lim])
axis square
xticks([])
yticks([])
title(simulation_names(simu),'FontSize',12,'FontName','Helvetica','Interpreter','none')
colorbar
subplot(4,n_simu,simu+1*n_simu)
lim=4*std(abs(FC_Alpha(Isubdiag)));
%lim=mean(diag(FC_Alpha));
imagesc(FC_Alpha,[-lim lim])
axis square
xticks([])
yticks([])
colorbar
subplot(4,n_simu,simu+2*n_simu)
lim=4*std(abs(FC_Theta(Isubdiag)));
%lim=mean(diag(FC_Theta));
imagesc(FC_Theta,[-lim lim])
axis square
xticks([])
yticks([])
colorbar
subplot(4,n_simu,simu+3*n_simu)
lim=5*std(FC_Delta(Isubdiag));
%lim=mean(diag(FC_Delta));
imagesc(FC_Delta,[-lim lim])
axis square
xticks([])
yticks([])
colorbar
if simu==1
EigVal_Delta_Thres= EigVal_Delta(1);
EigVal_Theta_Thres= EigVal_Theta(1);
EigVal_Alpha_Thres= EigVal_Alpha(1);
EigVal_Beta_Thres = EigVal_Beta(1);
EigVal_Gamma_Thres= EigVal_Gamma(1);
else
N_Modes_Delta(simu)=sum(EigVal_Delta>EigVal_Delta_Thres);
N_Modes_Theta(simu)=sum(EigVal_Theta>EigVal_Theta_Thres);
N_Modes_Alpha(simu)=sum(EigVal_Alpha>EigVal_Alpha_Thres);
N_Modes_Beta(simu) =sum(EigVal_Beta>EigVal_Beta_Thres);
N_Modes_Gamma(simu)=sum(EigVal_Gamma>EigVal_Gamma_Thres);
[Spatial_Modes_Delta{simu}, Val_Delta]=eigs(cov(Env_Delta'),N_Modes_Delta(simu));
[Spatial_Modes_Theta{simu}, Val_Theta]=eigs(cov(Env_Theta'),N_Modes_Theta(simu));
[Spatial_Modes_Alpha{simu}, Val_Alpha]=eigs(cov(Env_Alpha'),N_Modes_Alpha(simu));
[Spatial_Modes_Beta{simu}, Val_Beta]=eigs(cov(Env_Beta'),N_Modes_Beta(simu));
[Spatial_Modes_Gamma{simu}, Val_Gamma]=eigs(cov(Env_Gamma'),N_Modes_Gamma(simu));
Val_Modes_Delta{simu}=diag(Val_Delta);
Val_Modes_Theta{simu}=diag(Val_Theta);
Val_Modes_Alpha{simu}=diag(Val_Alpha);
Val_Modes_Beta{simu}=diag(Val_Beta);
Val_Modes_Gamma{simu}=diag(Val_Gamma);
end
end
figure
n_collumns=1;
% Strong K
for simu=1:n_simu
subplot(1,n_simu,simu)
hold on
barh(1,N_Modes_Delta(simu), 'Facecolor', [1 .8 .5])
barh(2,N_Modes_Theta(simu), 'Facecolor', [1 .7 .7])
barh(3,N_Modes_Alpha(simu), 'Facecolor', [.7 .7 1])
barh(4,N_Modes_Beta(simu), 'Facecolor', [.7 1 .7])
%barh(5,N_Modes_Gamma(simu), 'Facecolor', [.7 1 .7])
yticks([1 2 3 4])
yticklabels({'\delta','\theta', '\alpha', '\beta'})
ylabel('Frequency bands','FontSize',12,'FontName','Helvetica')
xlabel('Eigenvalues > baseline','FontSize',12,'FontName','Helvetica')
title(simulation_names(simu),'FontSize',12,'FontName','Helvetica','Interpreter','none')
ylim([0 5])
xlim([0 28])
end
% %% Render modes
%
% simu=3;
%
% figure
%
% % delta modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Delta{simu},2)
% disp(mode_num)
% subplot_tight(4,25,3*25+mode_num,0.001)
% V=Spatial_Modes_Delta{simu}(:,mode_num);
% Render_links_in_cortex(V,[1 .7 0])
% title(['\lambda= ' num2str(Val_Modes_Delta{simu}(mode_num),'%.2e')],'FontSize',7)
% end
%
% % theta modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Theta{simu},2)
% disp(mode_num)
% subplot_tight(4,25,2*25+mode_num,0.001)
% V=Spatial_Modes_Theta{simu}(:,mode_num);
% Render_links_in_cortex(V,'r')
% title(['\lambda= ' num2str(Val_Modes_Theta{simu}(mode_num),'%.2e')],'FontSize',7)
% end
%
% % alpha modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Alpha{simu},2)
% disp(mode_num)
% subplot_tight(4,25,25+mode_num,0.001)
% V=Spatial_Modes_Alpha{simu}(:,mode_num);
% Render_links_in_cortex(V,'b')
% title(['\lambda= ' num2str(Val_Modes_Alpha{simu}(mode_num),'%.2e')],'FontSize',7)
% end
%
% % beta modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Beta{simu},2)
% disp(mode_num)
% subplot_tight(4,25,mode_num,0.001)
% V=Spatial_Modes_Beta{simu}(:,mode_num);
% Render_links_in_cortex(V,'g')
% title(['\lambda= ' num2str(Val_Modes_Beta{simu}(mode_num),'%.2e')],'FontSize',7)
% end
%
% simu=4;
%
% figure
%
% % delta modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Delta{simu},2)
% disp(mode_num)
% subplot_tight(4,25,3*25+mode_num,0.001)
% V=Spatial_Modes_Delta{simu}(:,mode_num);
% Render_links_in_cortex(V,[1 .7 0])
% title(['\lambda= ' num2str(Val_Modes_Delta{simu}(mode_num),'%.2e')],'FontSize',7)
% end
%
% % theta modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Theta{simu},2)
% disp(mode_num)
% subplot_tight(4,25,2*25+mode_num,0.001)
% V=Spatial_Modes_Theta{simu}(:,mode_num);
% Render_links_in_cortex(V,'r')
% title(['\lambda= ' num2str(Val_Modes_Theta{simu}(mode_num),'%.2e')],'FontSize',7)
% end
%
% % alpha modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Alpha{simu},2)
% disp(mode_num)
% subplot_tight(4,25,25+mode_num,0.001)
% V=Spatial_Modes_Alpha{simu}(:,mode_num);
% Render_links_in_cortex(V,'b')
% title(['\lambda= ' num2str(Val_Modes_Alpha{simu}(mode_num),'%.2e')],'FontSize',7)
% end
%
% % beta modes
% colormap(jet)
% for mode_num=1:size(Spatial_Modes_Beta{simu},2)
% disp(mode_num)
% subplot_tight(4,25,mode_num,0.001)
% V=Spatial_Modes_Beta{simu}(:,mode_num);
% Render_links_in_cortex(V,'g')
% title(['\lambda= ' num2str(Val_Modes_Beta{simu}(mode_num),'%.2e')],'FontSize',7)
% end